ترغب بنشر مسار تعليمي؟ اضغط هنا

GRAVITY: beam stabilization and light injection subsystems

208   0   0.0 ( 0 )
 نشر من قبل Oliver Pfuhl
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present design results of the 2nd generation VLTI instrument GRAVITY beam stabilization and light injection subsystems. Designed to deliver micro-arcsecond astrometry, GRAVITY requires an unprecedented stability of the VLTI optical train. To meet the astrometric requirements, we have developed a dedicated laser guiding system, correcting the longitudinal and lateral pupil position as well as the image jitter. The actuators for the correction are provided by four fiber coupler units located in the GRAVITY cryostat. Each fiber coupler picks the light of one telescope and stabilizes the beam. Furthermore each unit provides field de-rotation, polarization analysis as well as atmospheric piston correction. Using a novel roof prism design offers the possibility of on-axis as well as off-axis fringe tracking without changing the optical path. Finally the stabilized beam is injected with minimized losses into single-mode fibers via parabolic mirrors. We present lab results of the first guiding- as well as the first fiber coupler prototype regarding the closed loop performance and the optical quality. Based on the lab results we discuss the on-sky performance of the system and the implications concerning the sensitivity of GRAVITY.

قيم البحث

اقرأ أيضاً

We present the installed and fully operational beam stabilization and fiber injection subsystem feeding the 2nd generation VLTI instrument GRAVITY. The interferometer GRAVITY requires an unprecedented stability of the VLTI optical train to achieve mi cro-arcsecond astrometry. For this purpose, GRAVITY contains four fiber coupler units, one per telescope. Each unit is equipped with actuators to stabilize the telescope beam in terms of tilt and lateral pupil displacement, to rotate the field, to adjust the polarization and to compensate atmospheric piston. A special roof-prism offers the possibility of on-axis as well as off-axis fringe tracking without changing the optical train. We describe the assembly, integration and alignment and the resulting optical quality and performance of the individual units. Finally, we present the closed-loop performance of the tip-tilt and pupil tracking achieved with the final systems in the lab.
SOXS (Son Of X-Shooter) is the new medium resolution wide-band spectrograph to be installed at the 3.6m New Technology Telescope (NTT) in La Silla. SOXS will offer simultaneous wavelength coverage from 0.35 to 2.0 {mu}m and will be dedicated to the s tudy of transient and variable sources. While nominal optical performances of the system were presented in previous proceedings (arXiv:1809.01521), we here present a set of further analyses aimed to identify and quantify optical effects, due to changes in temperature and orientation of the instrument during alignment and operations.
GRAVITY is the second generation Very Large Telescope Interferometer instrument for precision narrow-angle astrometry and interferometric imaging in the Near Infra-Red (NIR). It shall provide precision astrometry of order 10 microarcseconds, and imag ing capability at a few milliarcsecond resolution, and hence will revolutionise dynamical measurements of celestial objects. GRAVITY is currently in the last stages of its integration and tests in Garching at MPE, and will be delivered to the VLT Interferometer (VLTI) in 2015. We present here the instrument, with a particular focus on the components making use of fibres: integrated optics beam combiners, polarisation rotators, fibre differential delay lines, and the metrology.
GRAVITY is an adaptive optics assisted Beam Combiner for the second generation VLTI instrumentation. The instrument will provide high-precision narrow-angle astrometry and phase-referenced interferometric imaging in the astronomical K-band for faint objects. We describe the wide range of science that will be tackled with this instrument, highlighting the unique capabilities of the VLTI in combination with GRAVITY. The most prominent goal is to observe highly relativistic motions of matter close to the event horizon of Sgr A*, the massive black hole at center of the Milky Way. We present the preliminary design that fulfils the requirements that follow from the key science drivers: It includes an integrated optics, 4-telescope, dual feed beam combiner operated in a cryogenic vessel; near-infrared wavefrontsensing adaptive optics; fringe-tracking on secondary sources within the field of view of the VLTI and a novel metrology concept. Simulations show that 10 {mu}as astrometry within few minutes is feasible for a source with a magnitude of mK = 15 like Sgr A*, given the availability of suitable phase reference sources (mK = 10). Using the same setup, imaging of mK = 18 stellar sources in the interferometric field of view is possible, assuming a full night of observations and the corresponding UV coverage of the VLTI.
MSE will be a massively multiplexed survey telescope, including a segmented primary mirror which feeds fibers at the prime focus, including an array of approximately four thousand fibers, positioned precisely to feed banks of spectrographs several te ns of meters away. We describe the process of mapping top-level requirements on MSE to technical specifications for subsystems located at the MSE prime focus. This includes the overall top-level requirements based on knowledge of similar systems at other telescopes and how those requirements were converted into specifications so that the subsystems could begin working on their Conceptual Design Phases. We then discuss the verification of the engineering specifications and the compiling of lower-level requirements and specifications into higher level performance budgets (e.g. Image Quality). We also briefly discuss the interface specifications, their effect on the performance of the system and the plan to manage them going forward. We also discuss the opto-mechanical design of the telescope top end assembly and refer readers to more details for instrumentation located at the top end.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا