ﻻ يوجد ملخص باللغة العربية
GRAVITY is the second generation Very Large Telescope Interferometer instrument for precision narrow-angle astrometry and interferometric imaging in the Near Infra-Red (NIR). It shall provide precision astrometry of order 10 microarcseconds, and imaging capability at a few milliarcsecond resolution, and hence will revolutionise dynamical measurements of celestial objects. GRAVITY is currently in the last stages of its integration and tests in Garching at MPE, and will be delivered to the VLT Interferometer (VLTI) in 2015. We present here the instrument, with a particular focus on the components making use of fibres: integrated optics beam combiners, polarisation rotators, fibre differential delay lines, and the metrology.
GRAVITY is an adaptive optics assisted Beam Combiner for the second generation VLTI instrumentation. The instrument will provide high-precision narrow-angle astrometry and phase-referenced interferometric imaging in the astronomical K-band for faint
The very recent years have seen a promising start in scientific publications making use of images produced by near-infrared long-baseline interferometry. The technique has reached, at last, a technical maturity level that opens new avenues for numero
The VLTI instrument GRAVITY will provide very powerful astrometry by combining the light from four telescopes for two objects simultaneously. It will measure the angular separation between the two astronomical objects to a precision of 10 microarcsec
The Extrasolar Planet Search with PRIMA project (ESPRI) aims at characterising and detecting extrasolar planets by measuring the host stars reflex motion using the narrow-angle astrometry capability of the PRIMA facility at the Very Large Telescope I
We present the adaptive optics assisted, near-infrared VLTI instrument - GRAVITY - for precision narrow-angle astrometry and interferometric phase referenced imaging of faint objects. Precision astrometry and phase-referenced interferometric imaging