ترغب بنشر مسار تعليمي؟ اضغط هنا

Studies of Nucleon Resonance Structure in Exclusive Meson Electroproduction

181   0   0.0 ( 0 )
 نشر من قبل Gleb Fedotov V
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Studies of the structure of excited baryons are key to the N* program at Jefferson Lab. Within the first year of data taking with the Hall B CLAS12 detector following the 12 GeV upgrade, a dedicated experiment will aim to extract the N* electrocouplings at high photon virtualities Q2. This experiment will allow exploration of the structure of N* resonances at the highest photon virtualities ever yet achieved, with a kinematic reach up to Q2 = 12 GeV2. This high-Q2 reach will make it possible to probe the excited nucleon structures at distance scales ranging from where effective degrees of freedom, such as constituent quarks, are dominant through the transition to where nearly massless bare-quark degrees of freedom are relevant. In this document, we present a detailed description of the physics that can be addressed through N* structure studies in exclusive meson electroproduction. The discussion includes recent advances in reaction theory for extracting N* electrocouplings from meson electroproduction off protons, along with QCD-based approaches to the theoretical interpretation of these fundamental quantities. This program will afford access to the dynamics of the non-perturbative strong interaction responsible for resonance formation, and will be crucial in understanding the nature of confinement and dynamical chiral symmetry breaking in baryons, and how excited nucleons emerge from QCD.



قيم البحث

اقرأ أيضاً

116 - Victor I. Mokeev 2018
Studies of the nucleon resonance electroexcitation amplitudes in a wide range of photon virtualities offer unique information on many facets of strong QCD behind the generation of all prominent excited nucleon states. Advances in the evaluation of re sonance electroexcitation amplitudes from the data measured with the CLAS detector and the future extension of these studies with the CLAS12 detector at Jefferson Lab are presented. For the first time, analyses of $pi^0p$, $pi^+n$, $eta p$, and $pi^+pi^-p$ electroproduction off proton channels have provided electroexcitation amplitudes of most resonances in the mass range up to 1.8 GeV and at photon virtualities $Q^2 < 5$~GeV$^2$.Studies of the resonance electroexcitation amplitudes revealed the $N^*$ structure as a complex interplay between the inner core of three dressed quarks and the external meson-baryon cloud. The successful description of the $Delta(1232)3/2^+$ and $N(1440)1/2^+$ electrocouplings achieved within the Dyson-Schwinger Equation approach under a traceable connection to the QCD Lagrangian and supported by the novel light front quark model demonstrated the relevance of dressed quarks with dynamically generated masses as an active structural component in baryons. Future experiments with the CLAS12 detector will offer insight into the structure of all prominent resonances at the highest photon virtualities, $Q^2 < 12$~GeV$^2$, ever achieved in exclusive reactions, thus addressing the most challenging problems of the Standard Model on the nature of hadron mass, quark-gluon confinement, and the emergence of nucleon resonance structures from QCD. A search for new states of hadronic matter, the so-called hybrid-baryons with glue as a structural component, will complete the long term efforts on the resonance spectrum exploration.
143 - V.D. Burkert , V.I. Mokeev , 2019
The results on the photo- and electroexcitation amplitudes of most nucleon resonances in the mass range up to 2.0 GeV determined from the CLAS experimental data on exclusive $pi^+pi^-p$ photo-/electroproduction off protons in collaboration between th e Jefferson Lab and Moscow State University are presented. The first and only available results on electroexcitation amplitudes from CLAS in a wide range of photon virtualities $Q^2$ $<$ 5.0 GeV$^2$ revealed the nucleon resonance structure as a complex interplay between the inner core of three dressed quarks and external meson-baryon cloud. These results shed light on the strong QCD dynamics which underlines the generation of excited nucleon states of different structural features from confined quarks and gluons. The future prospects of these studies in the new era of experiments with the CLAS12 detector, which started successfully in Spring of 2018, are outlined.
The transition gamma_{v}pN^* amplitudes (electrocouplings) for prominent excited nucleon states obtained in a wide area of photon virtualities offer valuable information for the exploration of the N^* structure at different distances and allow us to access the complex dynamics of non-perturbative strong interaction. The current status in the studies of gamma_{v}pN^* electrocouplings from the data on exclusive meson electroproduction off protons measured with the CLAS detector at Jefferson Lab is presented. The impact of these results on exploration of the N^* structure is discussed.
Nucleon resonance contributions to the inclusive proton $F_2$ and $F_L$ structure functions are computed from resonance electroexcitation amplitudes in the mass range up to 1.75 GeV extracted from CLAS exclusive meson electroproduction data. Taking i nto account for the first time quantum interference effects, the resonance contributions are compared with inclusive proton structure functions evaluated from $(e,eX)$ cross section data and the longitudinal to transverse cross section ratio. Contributions from isospin-1/2 and 3/2 resonances remain substantial over the entire range of photon virtualities $Q^2 lesssim 4$ GeV$^2$, where their electroexcitation amplitudes have been obtained, and their $Q^2$ evolution displays pronounced differences in the first, second and third resonance regions. We compare the structure functions in the resonance region with those computed from parton distributions fitted to deep-inelastic scattering data, and extrapolated to the resonance region, providing new quantitative assessments of quark-hadron duality in inclusive electron-proton scattering.
A theory of two-pion photo- and electroproduction off the nucleon is derived considering all explicit three-body mechanisms of the interacting $pipi N$ system. The full three-body dynamics of the interacting $pipi N$ system is accounted for by the Fa ddeev-type ordering structure of the Alt-Grassberger-Sandhas equations. The formulation is valid for hadronic two-point and three-point functions dressed by arbitrary internal mechanisms provided all associated electromagnetic currents are constructed to satisfy their respective (generalized) Ward-Takahashi identities. It is shown that coupling the photon to the Faddeev structure of the underlying hadronic two-pion production mechanisms results in a natural expansion of the full two-pion photoproduction current $M_{pipi}^mu$ in terms of multiple dressed loops involving two-body subsystem scattering amplitudes of the $pipi N$ system that preserves gauge invariance as a matter of course order by order in the number of (dressed) loops. A closed-form expression is presented for the entire gauge-invariant current $M_{pipi}^mu$ with complete three-body dynamics. Individually gauge-invariant truncations of the full dynamics most relevant for practical applications at the no-loop, one-loop, and two-loop levels are discussed in detail. An approximation scheme to the full two-pion amplitude for calculational purposes is also presented. It approximates, systematically, the full amplitude to any desired order of expansion in the underlying hadronic two-body amplitude. Moreover, it allows for the approximate incorporation of all neglected higher-order mechanisms in terms of a phenomenological remainder current. The effect and phenomenological usefulness of this remainder current is assessed in a tree-level calculation of the $gamma N to K K Xi$ reaction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا