ترغب بنشر مسار تعليمي؟ اضغط هنا

Theory of two-pion photo- and electroproduction off the nucleon

293   0   0.0 ( 0 )
 نشر من قبل Helmut Haberzettl
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A theory of two-pion photo- and electroproduction off the nucleon is derived considering all explicit three-body mechanisms of the interacting $pipi N$ system. The full three-body dynamics of the interacting $pipi N$ system is accounted for by the Faddeev-type ordering structure of the Alt-Grassberger-Sandhas equations. The formulation is valid for hadronic two-point and three-point functions dressed by arbitrary internal mechanisms provided all associated electromagnetic currents are constructed to satisfy their respective (generalized) Ward-Takahashi identities. It is shown that coupling the photon to the Faddeev structure of the underlying hadronic two-pion production mechanisms results in a natural expansion of the full two-pion photoproduction current $M_{pipi}^mu$ in terms of multiple dressed loops involving two-body subsystem scattering amplitudes of the $pipi N$ system that preserves gauge invariance as a matter of course order by order in the number of (dressed) loops. A closed-form expression is presented for the entire gauge-invariant current $M_{pipi}^mu$ with complete three-body dynamics. Individually gauge-invariant truncations of the full dynamics most relevant for practical applications at the no-loop, one-loop, and two-loop levels are discussed in detail. An approximation scheme to the full two-pion amplitude for calculational purposes is also presented. It approximates, systematically, the full amplitude to any desired order of expansion in the underlying hadronic two-body amplitude. Moreover, it allows for the approximate incorporation of all neglected higher-order mechanisms in terms of a phenomenological remainder current. The effect and phenomenological usefulness of this remainder current is assessed in a tree-level calculation of the $gamma N to K K Xi$ reaction.

قيم البحث

اقرأ أيضاً

Parity violating (PV) contributions due to interference between $gamma$ and $Z^0$ exchange are calculated for pion electroproduction off the nucleon. A phenomenological model with effective Lagrangians is used to determine the resulting asymmetry for the energy region between threshold and $Delta(1232)$ resonance. The $Delta$ resonance is treated as a Rarita-Schwinger field with phenomenological $N Delta$ transition currents. The background contributions are given by the usual Born terms using the pseudovector $pi N$ Lagrangian. Numerical results for the asymmetry are presented.
We discuss the extended on-mass-shell scheme for manifestly Lorentz-invariant baryon chiral perturbation theory. We present a calculation of pion photo- and electroproduction up to and including order $q^4$. The low-energy constants have been fixed b y fitting experimental data in all available reaction channels. Our results can be accessed via a web interface, the so-called chiral MAID (http://www.kph.uni-mainz.de/MAID/chiralmaid/).
We present a calculation of pion photo- and electroproduction in manifestly Lorentz-invariant baryon chiral perturbation theory up to and including order q^4. We fix the low-energy constants by fitting experimental data in all available reaction chan nels. Our results can be accessed via a web interface, the so-called chiral MAID.
60 - Victor I Mokeev 2019
Exclusive $pi^+pi^-p$ photo- and electroproduction data from CLAS have considerably extended the information on the spectrum and structure of nucleon resonances. The data from the $pi^+pi^-p$ and $Npi$ channels have provided results on the electrocou plings of most resonances in the mass region up to 1.8 GeV and at photon virtualities up to 5.0 GeV$^2$. The recent CLAS data on $pi^+pi^-p$ photoproduction have improved knowledge on the photocouplings of nucleon resonances in the mass range of 1.6 GeV $<$ $M_{N^*}$ $<$ 2.0 GeV and on their decays to the $pi Delta$ and $rho p$ final hadron states. For the first time, the electrocouplings of the $N(1440)1/2^+$ and $N(1520)3/2^-$ excited states have become available from $pi^+pi^-p$ data at 2.0 GeV$^2$ $<$ $Q^2$ $<$ 5.0 GeV$^2$. Analyses of the combined $pi^+pi^-p$ photo- and electroproduction data have revealed evidence for the candidate-state $N(1720)3/2^+$. The new results on the nucleon resonance spectrum, electroexcitation amplitudes from analysis of the CLAS $pi^+pi^-p$ photo- and electroproduction data, and their impact on the exploration of strong QCD are presented.
143 - V.D. Burkert , V.I. Mokeev , 2019
The results on the photo- and electroexcitation amplitudes of most nucleon resonances in the mass range up to 2.0 GeV determined from the CLAS experimental data on exclusive $pi^+pi^-p$ photo-/electroproduction off protons in collaboration between th e Jefferson Lab and Moscow State University are presented. The first and only available results on electroexcitation amplitudes from CLAS in a wide range of photon virtualities $Q^2$ $<$ 5.0 GeV$^2$ revealed the nucleon resonance structure as a complex interplay between the inner core of three dressed quarks and external meson-baryon cloud. These results shed light on the strong QCD dynamics which underlines the generation of excited nucleon states of different structural features from confined quarks and gluons. The future prospects of these studies in the new era of experiments with the CLAS12 detector, which started successfully in Spring of 2018, are outlined.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا