ترغب بنشر مسار تعليمي؟ اضغط هنا

Discovery of TeV Gamma-ray Emission from CTA 1 by VERITAS

112   0   0.0 ( 0 )
 نشر من قبل Steven McArthur
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the discovery of TeV gamma-ray emission coincident with the shell-type radio supernova remnant (SNR) CTA 1 using the VERITAS gamma-ray observatory. The source, VER J0006+729, was detected as a 6.5 standard deviation excess over background and shows an extended morphology, approximated by a two-dimensional Gaussian of semi-major (semi-minor) axis 0.30 degree (0.24 degree) and a centroid 5 from the Fermi gamma-ray pulsar PSR J0007+7303 and its X-ray pulsar wind nebula (PWN). The photon spectrum is well described by a power-law dN/dE = N_0 (E/3 TeV)^(-Gamma), with a differential spectral index of Gamma = 2.2 +- 0.2_stat +- 0.3_sys, and normalization N_0 = (9.1 +- 1.3_stat +- 1.7_sys) x 10^(-14) cm^(-2) s^(-1) TeV^(-1). The integral flux, F_gamma = 4.0 x 10^(-12) erg cm^(-2) s^(-1) above 1 TeV, corresponds to 0.2% of the pulsar spin-down power at 1.4 kpc. The energetics, co-location with the SNR, and the relatively small extent of the TeV emission strongly argue for the PWN origin of the TeV photons. We consider the origin of the TeV emission in CTA 1.



قيم البحث

اقرأ أيضاً

We report on the search for very-high-energy gamma-ray emission from the regions around three nearby supersonic pulsars (PSR B0355+54, PSR J0357+3205 and PSR J1740+1000) that exhibit long X-ray tails. To date there is no clear detection of TeV emissi on from any pulsar tail that is prominent in X-ray or radio. We provide upper limits on the TeV flux, and luminosity, and also compare these limits with other pulsar wind nebulae detected in X-rays and the tail emission model predictions. We find that at least one of the three tails is likely to be detected in observations that are a factor of 2-3 more sensitive. The analysis presented here also has implications for deriving the properties of pulsar tails, for those pulsars whose tails could be detected in TeV.
155 - V. A. Acciari , E. Aliu , T. Arlen 2011
We report the discovery of TeV gamma-ray emission from the Type Ia supernova remnant (SNR) G120.1+1.4, known as Tychos supernova remnant. Observations performed in the period 2008-2010 with the VERITAS ground-based gamma-ray observatory reveal weak e mission coming from the direction of the remnant, compatible with a point source located at $00^{rm h} 25^{rm m} 27.0^{rm s}, +64^{circ} 10^{prime} 50^{primeprime}$ (J2000). The TeV photon spectrum measured by VERITAS can be described with a power-law $dN/dE = C(E/3.42;textrm{TeV})^{-Gamma}$ with $Gamma = 1.95 pm 0.51_{stat} pm 0.30_{sys}$ and $C = (1.55 pm 0.43_{stat} pm 0.47_{sys}) times 10^{-14}$ cm$^{-2}$s$^{-1}$TeV$^{-1}$. The integral flux above 1 TeV corresponds to $sim 0.9%$ percent of the steady Crab Nebula emission above the same energy, making it one of the weakest sources yet detected in TeV gamma rays. We present both leptonic and hadronic models which can describe the data. The lowest magnetic field allowed in these models is $sim 80 mu$G, which may be interpreted as evidence for magnetic field amplification.
The pulsar wind nebula (PWN) 3C 58 is one of the historical very-high-energy (VHE; E>100 GeV) gamma-ray source candidates. It is energized by one of the highest spin-down power pulsars known (5% of Crab pulsar) and it has been compared to the Crab Ne bula due to their morphological similarities. This object was previously observed by imaging atmospheric Cherenkov telescopes (Whipple, VERITAS and MAGIC), although not detected, with an upper limit of 2.4% Crab Unit (C.U.) at VHE. It was detected by Fermi-LAT with a spectrum extending beyond 100 GeV. We analyzed 81 hours of 3C 58 data taken with the MAGIC telescopes and we detected VHE gamma-ray emission with a significance of 5.7 sigma and an integral flux of 0.65% C.U. above 1 TeV. The differential energy spectrum between 400 GeV and 10 TeV is well described by a power-law function dphi/dE=f_0(E/1TeV)^{-Gamma} with f_0=(2.0pm0.4_{stat}pm0.6_{sys})times10^{-13}cm^{-2}s^{-1}TeV^{-1} and Gamma=2.4pm0.2_{stat}pm0.2_{sys}. The skymap is compatible with an unresolved source. We report the first significant detection of PWN 3C 58 at TeV energies. According to our results 3C 58 is the least luminous VHE gamma-ray PWN ever detected at VHE and the one with the lowest flux at VHE to date. We compare our results with the expectations of time-dependent models in which electrons up-scatter photon fields. The best representation favors a distance to the PWN of 2 kpc and Far Infrared (FIR) comparable to CMB photon fields. If we consider an unexpectedly high FIR density, the data can also be reproduced by models assuming a 3.2 kpc distance. A low magnetic field, far from equipartition, is required to explain the VHE data. Hadronic contribution from the hosting supernova remnant (SNR) requires unrealistic energy budget given the density of the medium, disfavoring cosmic ray acceleration in the SNR as origin of the VHE gamma-ray emission.
The pulsar wind nebula (PWN) 3C 58 has been proposed as a good candidate for detection at VHE (VHE; E>100 GeV) for many years. It is powered by one of the highest spin-down power pulsars known (5% of Crab pulsar) and it has been compared to the Crab Nebula due to its morphology. This object was previously observed by imaging atmospheric Cherenkov telescopes (Whipple, VERITAS and MAGIC), and upper limit of 2.4% Crab Unit (C.U.) at VHE. It was detected by Fermi-LAT with a spectrum extending beyond 100 GeV. We analyzed 81 hours of 3C 58 data taken with the MAGIC telescopes and we detected VHE gamma-ray emission with a significance of 5.7 sigma and an integral flux of 0.65% C.U. above 1 TeV. We report the first significant detection of PWN 3C 58 at TeV energies. According to our results 3C 58 is the least luminous VHE gamma-ray PWN ever detected at VHE and the one with the lowest flux at VHE to date. We compare our results with the expectations of time-dependent models in which electrons up-scatter photon fields. The best representation favors a distance to the PWN of 2 kpc and Far Infrared (FIR) comparable to CMB photon fields. If we consider an unexpectedly high FIR density according to GALPROP, the data can also be reproduced by models assuming a 3.2 kpc distance. A low magnetic field, far from equipartition, is required to explain the VHE data. Hadronic contribution from the hosting supernova remnant (SNR) requires an unrealistic energy budget given the density of the medium, disfavoring cosmic ray acceleration in the SNR as origin of the VHE gamma-ray emission.
166 - A. Archer , W. Benbow , R. Bird 2016
The Galactic Center Ridge has been observed extensively in the past by both GeV and TeV gamma-ray instruments revealing a wealth of structure, including a diffuse component as well as the point sources G0.9+0.1 (a composite supernova remnant) and Sgr A* (believed to be associated with the supermassive black hole located at the center of our Galaxy). Previous very high energy (VHE) gamma-ray observations with the H.E.S.S. experiment have also detected an extended TeV gamma-ray component along the Galactic plane in the >300 GeV gamma-ray regime. Here we report on observations of the Galactic Center Ridge from 2010-2014 by the VERITAS telescope array in the >2 TeV energy range. From these observations we 1.) provide improved measurements of the differential energy spectrum for Sgr A* in the >2 TeV gamma-ray regime, 2.) provide a detection in the >2 TeV gamma-ray emission from the composite SNR G0.9+0.1 and an improved determination of its multi-TeV gamma-ray energy spectrum, 3.) report on the detection of VER J1746-289, a localized enhancement of >2 TeV gamma-ray emission along the Galactic plane.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا