ترغب بنشر مسار تعليمي؟ اضغط هنا

Discovery of TeV gamma-ray emission from the pulsar wind nebula 3C 58 by MAGIC

200   0   0.0 ( 0 )
 نشر من قبل Rub\\'en L\\'opez-Coto
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The pulsar wind nebula (PWN) 3C 58 is one of the historical very-high-energy (VHE; E>100 GeV) gamma-ray source candidates. It is energized by one of the highest spin-down power pulsars known (5% of Crab pulsar) and it has been compared to the Crab Nebula due to their morphological similarities. This object was previously observed by imaging atmospheric Cherenkov telescopes (Whipple, VERITAS and MAGIC), although not detected, with an upper limit of 2.4% Crab Unit (C.U.) at VHE. It was detected by Fermi-LAT with a spectrum extending beyond 100 GeV. We analyzed 81 hours of 3C 58 data taken with the MAGIC telescopes and we detected VHE gamma-ray emission with a significance of 5.7 sigma and an integral flux of 0.65% C.U. above 1 TeV. The differential energy spectrum between 400 GeV and 10 TeV is well described by a power-law function dphi/dE=f_0(E/1TeV)^{-Gamma} with f_0=(2.0pm0.4_{stat}pm0.6_{sys})times10^{-13}cm^{-2}s^{-1}TeV^{-1} and Gamma=2.4pm0.2_{stat}pm0.2_{sys}. The skymap is compatible with an unresolved source. We report the first significant detection of PWN 3C 58 at TeV energies. According to our results 3C 58 is the least luminous VHE gamma-ray PWN ever detected at VHE and the one with the lowest flux at VHE to date. We compare our results with the expectations of time-dependent models in which electrons up-scatter photon fields. The best representation favors a distance to the PWN of 2 kpc and Far Infrared (FIR) comparable to CMB photon fields. If we consider an unexpectedly high FIR density, the data can also be reproduced by models assuming a 3.2 kpc distance. A low magnetic field, far from equipartition, is required to explain the VHE data. Hadronic contribution from the hosting supernova remnant (SNR) requires unrealistic energy budget given the density of the medium, disfavoring cosmic ray acceleration in the SNR as origin of the VHE gamma-ray emission.



قيم البحث

اقرأ أيضاً

The pulsar wind nebula (PWN) 3C 58 has been proposed as a good candidate for detection at VHE (VHE; E>100 GeV) for many years. It is powered by one of the highest spin-down power pulsars known (5% of Crab pulsar) and it has been compared to the Crab Nebula due to its morphology. This object was previously observed by imaging atmospheric Cherenkov telescopes (Whipple, VERITAS and MAGIC), and upper limit of 2.4% Crab Unit (C.U.) at VHE. It was detected by Fermi-LAT with a spectrum extending beyond 100 GeV. We analyzed 81 hours of 3C 58 data taken with the MAGIC telescopes and we detected VHE gamma-ray emission with a significance of 5.7 sigma and an integral flux of 0.65% C.U. above 1 TeV. We report the first significant detection of PWN 3C 58 at TeV energies. According to our results 3C 58 is the least luminous VHE gamma-ray PWN ever detected at VHE and the one with the lowest flux at VHE to date. We compare our results with the expectations of time-dependent models in which electrons up-scatter photon fields. The best representation favors a distance to the PWN of 2 kpc and Far Infrared (FIR) comparable to CMB photon fields. If we consider an unexpectedly high FIR density according to GALPROP, the data can also be reproduced by models assuming a 3.2 kpc distance. A low magnetic field, far from equipartition, is required to explain the VHE data. Hadronic contribution from the hosting supernova remnant (SNR) requires an unrealistic energy budget given the density of the medium, disfavoring cosmic ray acceleration in the SNR as origin of the VHE gamma-ray emission.
104 - Seungjong Kim , Hongjun An 2020
We investigate broadband emission properties of the pulsar wind nebula (PWN) 3C 58 using a spectral energy distribution (SED) model. We attempt to match simultaneously the broadband SED and spatial variations of X-ray emission in the PWN. We further the model to explain a possible far-IR feature of which a hint is recently suggested in 3C 58: a small bump at $sim$$10^{11}$ GHz in the PLANCK and Herschel band. While external dust emission may easily explain the observed bump, it may be internal emission of the source implying an additional population of particles. Although significance for the bump is not high, here we explore possible origins of the IR bump using the emission model and find that a population of electrons with GeV energies can explain the bump. If it is produced in the PWN, it may provide new insights into particle acceleration and flows in PWNe.
70 - Hongjun An 2019
We report on new NuSTAR and archival Chandra observations of the pulsar wind nebula (PWN) 3C 58. Using the X-ray data, we measure energy-dependent morphologies and spatially-resolved spectra of the PWN. We find that the PWN size becomes smaller with increasing energy and that the spectrum is softer in outer regions. In the spatially integrated spectrum of the PWN, we find a hint of a spectral break at $sim$25 keV. We interpret these findings using synchrotron-radiation scenarios. We attribute the size change to the synchrotron burn-off effect. The radial profile of the spectral index has a break at $Rsim80$, implying a maximum electron energy of $sim$200 TeV which is larger than a previous estimate, and the 25-keV spectral break corresponds to a maximum electron energy of $sim$140 TeV for an assumed magnetic field strength of 80 $mu$G. Combining the X-ray data and a previous radio-to-IR SED, we measure a cooling break frequency to be $sim 10^{15}$ Hz, which constrains the magnetic-field strength in 3C 58 to be 30-200$mu$G for an assumed age range of 800-5000 years.
Pulsars are known to power winds of relativistic particles that can produce bright nebulae by interacting with the surrounding medium. These pulsar wind nebulae (PWNe) are observed in the radio, optical, x-rays and, in some cases, also at TeV energie s, but the lack of information in the gamma-ray band prevents from drawing a comprehensive multiwavelength picture of their phenomenology and emission mechanisms. Using data from the AGILE satellite, we detected the Vela pulsar wind nebula in the energy range from 100 MeV to 3 GeV. This result constrains the particle population responsible for the GeV emission, probing multivavelength PWN models, and establishes a class of gamma-ray emitters that could account for a fraction of the unidentified Galactic gamma-ray sources.
We present the significant detection of the first extragalactic pulsar wind nebula (PWN) detected in gamma rays, N157B, located in the large Magellanic Cloud (LMC). Pulsars with high spin-down luminosity are found to power energised nebulae that emit gamma rays up to energies of several tens of TeV. N157B is associated with PSRJ0537-6910, which is the pulsar with the highest known spin-down luminosity. The High Energy Stereoscopic System telescope array observed this nebula on a yearly basis from 2004 to 2009 with a dead-time corrected exposure of 46 h. The gamma-ray spectrum between 600 GeV and 12 TeV is well-described by a pure power-law with a photon index of 2.8 pm 0.2(stat) pm 0.3(syst) and a normalisation at 1 TeV of (8.2 pm 0.8(stat) pm 2.5(syst)) times 10^-13 cm^-2s^-1TeV^-1. A leptonic multi-wavelength model shows that an energy of about 4 times 10^49erg is stored in electrons and positrons. The apparent efficiency, which is the ratio of the TeV gamma-ray luminosity to the pulsars spindown luminosity, 0.08% pm 0.01%, is comparable to those of PWNe found in the Milky Way. The detection of a PWN at such a large distance is possible due to the pulsars favourable spin-down luminosity and a bright infrared photon-field serving as an inverse-Compton-scattering target for accelerated leptons. By applying a calorimetric technique to these observations, the pulsars birth period is estimated to be shorter than 10 ms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا