ﻻ يوجد ملخص باللغة العربية
We have investigated the transition from strong to ultra-strong coupling regime between a mid-infrared intersubband excitation and the fundamental mode of a metal-dielectric-metal microcavity. The ultra-strong coupling regime is demonstrated up to room temperature for a wavelength of $11.7 mu$m by using 260 nm thick cavities, which impose an extreme sub-wavelength confinement. By varying the doping of our structures we show that the experimental signature of the transition to the ultra-strong coupling regime is the opening of a photonic gap in the polariton dispersion. The width of this gap depends quadratically on the ratio between the Rabi and intersubband transition energies.
Exciton condensation in an electron-hole bilayer system of monolayer transition metal dichalcogenides is analyzed at three different levels of theory to account for screening and quasiparticle renormalization. The large effective masses of the transi
We present a model for exciton-plasmon coupling based on an energy exchange mechanism between quantum emitters (QE) and localized surface plasmons in metal-dielectric structures. Plasmonic correlations between QEs give rise to a collective state exch
We study the decoherence of a superconducting qubit due to the dispersive coupling to a damped harmonic oscillator. We go beyond the weak qubit-oscillator coupling, which we associate with a phase Purcell effect, and enter into a strong coupling regi
We study the energy level structure of the Tavis-Cumming model applied to an ensemble of independent magnetic spins $s=1/2$ coupled to a variable number of photons. Rabi splittings are calculated and their distribution is analyzed as a functin of pho
Being motivated by recent achievements in the rapidly developing fields of optical bound states in the continuum (BICs) and excitons in monolayers of transition metal dichalcogenides, we analyze strong coupling between BICs in $rm Ta_2O_5$ periodic p