ترغب بنشر مسار تعليمي؟ اضغط هنا

Enhanced charge stripe order of superconducting La(2-x)Ba(x)CuO(4) in a magnetic field

260   0   0.0 ( 0 )
 نشر من قبل Markus Huecker
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The effect of a magnetic field on the charge stripe order in La(2-x)Ba(x)CuO(4) has been studied by means of high energy (100 keV) x-ray diffraction for charge carrier concentrations ranging from strongly underdoped to optimally doped. We find that charge stripe order can be significantly enhanced by a magnetic field applied along the c-axis, but only at temperatures and dopings where it coexists with bulk superconductivity at zero field. The field also increases stripe correlations between the planes, which can result in an enhanced frustration of the interlayer Josephson coupling. Close to the famous x=1/8 compound, where zero field stripe order is pronounced and bulk superconductivity is suppressed, charge stripe order is independent of a magnetic field. The results imply that static stripe order and three-dimensionally coherent superconductivity are competing ground states.



قيم البحث

اقرأ أيضاً

The correlations between stripe order, superconductivity, and crystal structure in La(2-x)Ba(x)CuO(4) single crystals have been studied by means of x-ray and neutron diffraction as well as static magnetization measurements. The derived phase diagram shows that charge stripe order (CO) coexists with bulk superconductivity in a broad range of doping around x=1/8, although the CO order parameter falls off quickly for x<>1/8. Except for x=0.155, the onset of CO always coincides with the transition between the orthorhombic and the tetragonal low temperature structures. The CO transition evolves from a sharp drop at low x to a more gradual transition at higher x, eventually falling below the structural phase boundary for optimum doping. With respect to the interlayer CO correlations, we find no qualitative change of the stripe stacking order as a function of doping, and in-plane and out-of-plane correlations disappear simultaneously at the transition. Similarly to the CO, the spin stripe order (SO) is also most pronounced at x=1/8. Truly static SO sets in below the CO and coincides with the first appearance of in-plane superconducting correlations at temperatures significantly above the bulk transition to superconductivity (SC). Indications that bulk SC causes a reduction of the spin or charge stripe order could not be identified. We argue that CO is the dominant order that is compatible with SC pairing but competes with SC phase coherence. Comparing our results with data from the literature, we find good agreement if all results are plotted as a function of x instead of the nominal x, where x represents an estimate of the actual Ba content, extracted from the doping dependence of the structural transition between the orthorhombic phase and the tetragonal high-temperature phase.
We demonstrate that one can measure the charge-stripe order parameter in the hole-doped CuO(2) planes of La(1.875)Ba(0.125)CuO(4), La(1.48)Nd(0.4)Sr(0.12)CuO(4) and La(1.68)Eu(0.2)Sr(0.12)CuO(4) utilizing the wipeout effects of Cu-63 NQR. Application of the same approach to La(2-x)Sr(x)CuO(4) reveals the presence of similar stripe order for the entire underdoped superconducting regime 1/16 < x < 1/8.
172 - Young-June Kim , G. D. Gu , T. Gog 2007
We report a comprehensive x-ray scattering study of charge density wave (stripe) ordering in $rm La_{2-x}Ba_xCuO_4 (x approx 1/8)$, for which the superconducting $T_c$ is greatly suppressed. Strong superlattice reflections corresponding to static ord ering of charge stripes were observed in this sample. The structural modulation at the lowest temperature was deduced based on the intensity of over 70 unique superlattice positions surveyed. We found that the charge order in this sample is described with one-dimensional charge density waves, which have incommensurate wave-vectors (0.23, 0, 0.5) and (0, 0.23, 0.5) respectively on neighboring $rm CuO_2$ planes. The structural modulation due to the charge density wave order is simply sinusoidal, and no higher harmonics were observed. Just below the structural transition temperature, short-range charge density wave correlation appears, which develops into a large scale charge ordering around 40 K, close to the spin density wave ordering temperature. However, this charge ordering fails to grow into a true long range order, and its correlation length saturates at $sim 230AA$, and slightly decreases below about 15 K, which may be due to the onset of two-dimensional superconductivity.
The in-plane optical conductivity of seven La(2-x)Sr(x)CuO(4) single crystals with x between 0 and 0.15 has been studied from 30 to 295 K. All doped samples exhibit strong peaks in the far-infrared, which closely resemble those observed in Cu-O ladde rs with one-dimensional charge-ordering. The behavior with doping and temperature of the peak energy, width, and intensity allows us to conclude that we are observing charge stripes dynamics in La(2-x)Sr(x)CuO(4) on the fast time scale of infrared spectroscopy.
180 - Z. Stegen , Su Jung Han , Jie Wu 2012
We explore the evolution of superconductivity in La(2-x)Ba(x)CuO(4) with x=0.095 in magnetic fields of up to 35 T applied perpendicular to the CuO(2) planes. Previous work on this material has shown that perpendicular fields enhance both charge and s pin stripe order within the planes. We present measurements of the resistivity parallel and perpendicular to the planes, as well as the Hall effect. Measurements of magnetic susceptibility for fields of up to 15 T applied both parallel and perpendicular to the planes provide complementary measures of the superconductivity. We show that fields sufficient to destroy pair tunneling between the planes do not disrupt the superconducting correlations within the planes. In fact, we observe an onset of large amplitude but phase disordered superconductivity within the planes at approximately 30 K that is remarkably insensitive to field. With further cooling, we observe a phase-transition-like drop in the in-plane resistivity to an apparent state of superconductivity, despite the lack of phase coherence between the layers. These observations raise interesting questions concerning the identification of the upper critical field, where pairing is destroyed, in underdoped cuprates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا