ﻻ يوجد ملخص باللغة العربية
We characterize statistical properties of the flow field in developed turbulence using concepts from stochastic thermodynamics. On the basis of data from a free air-jet experiment, we demonstrate how the dynamic fluctuations induced by small-scale intermittency generate analogs of entropy-consuming trajectories with sufficient weight to make fluctuation theorems observable at the macroscopic scale. We propose an integral fluctuation theorem for the entropy production associated with the stochastic evolution of velocity increments along the eddy-hierarchy and demonstrate its extreme sensitivity to the accurate description of the tails of the velocity distributions.
The fluctuations of a Markovian jump process with one or more unidirectional transitions, where $R_{ij} >0$ but $R_{ji} =0$, are studied. We find that such systems satisfy an integral fluctuation theorem. The fluctuating quantity satisfying the theor
We use a recently proved fluctuation theorem for the currents to develop the response theory of nonequilibrium phenomena. In this framework, expressions for the response coefficients of the currents at arbitrary orders in the thermodynamic forces or
We introduce a simple prescription for calculating the spectra of thermal fluctuations of temperature-dependent quantities of the form $hat{delta T}(t)=int d^3vec{r} delta T(vec{r},t) q(vec{r})$. Here $T(vec{r}, t)$ is the local temperature at locati
We use a relationship between response and correlation function in nonequilibrium systems to establish a connection between the heat production and the deviations from the equilibrium fluctuation-dissipation theorem. This scheme extends the Harada-Sa
The fluctuation dissipation theorem (FDT) is the basis for a microscopic description of the interaction between electromagnetic radiation and matter.By assuming the electromagnetic radiation in thermal equilibrium and the interaction in the linear re