ﻻ يوجد ملخص باللغة العربية
We use a recently proved fluctuation theorem for the currents to develop the response theory of nonequilibrium phenomena. In this framework, expressions for the response coefficients of the currents at arbitrary orders in the thermodynamic forces or affinities are obtained in terms of the fluctuations of the cumulative currents and remarkable relations are obtained which are the consequences of microreversibility beyond Onsager reciprocity relations.
We present a stochastic approach for ion transport at the mesoscopic level. The description takes into account the self-consistent electric field generated by the fixed and mobile charges as well as the discrete nature of these latter. As an applicat
We introduce a simple prescription for calculating the spectra of thermal fluctuations of temperature-dependent quantities of the form $hat{delta T}(t)=int d^3vec{r} delta T(vec{r},t) q(vec{r})$. Here $T(vec{r}, t)$ is the local temperature at locati
We use a relationship between response and correlation function in nonequilibrium systems to establish a connection between the heat production and the deviations from the equilibrium fluctuation-dissipation theorem. This scheme extends the Harada-Sa
The fluctuation dissipation theorem (FDT) is the basis for a microscopic description of the interaction between electromagnetic radiation and matter.By assuming the electromagnetic radiation in thermal equilibrium and the interaction in the linear re
We characterize statistical properties of the flow field in developed turbulence using concepts from stochastic thermodynamics. On the basis of data from a free air-jet experiment, we demonstrate how the dynamic fluctuations induced by small-scale in