ﻻ يوجد ملخص باللغة العربية
Let $q:=e^{2 pi iz}$, where $z in mathbb{H}$. For an even integer $k$, let $f(z):=q^hprod_{m=1}^{infty}(1-q^m)^{c(m)}$ be a meromorphic modular form of weight $k$ on $Gamma_0(N)$. For a positive integer $m$, let $T_m$ be the $m$th Hecke operator and $D$ be a divisor of a modular curve with level $N$. Both subjects, the exponents $c(m)$ of a modular form and the distribution of the points in the support of $T_m. D$, have been widely investigated. When the level $N$ is one, Bruinier, Kohnen, and Ono obtained, in terms of the values of $j$-invariant function, identities between the exponents $c(m)$ of a modular form and the points in the support of $T_m.D$. In this paper, we extend this result to general $Gamma_0(N)$ in terms of values of harmonic weak Maass forms of weight $0$. By the distribution of Hecke points, this applies to obtain an asymptotic behaviour of convolutions of sums of divisors of an integer and sums of exponents of a modular form.
Let $j(z)$ be the modular $j$-invariant function. Let $tau$ be an algebraic number in the complex upper half plane $mathbb{H}$. It was proved by Schneider and Siegel that if $tau$ is not a CM point, i.e., $[mathbb{Q}(tau):mathbb{Q}] eq2$, then $j(tau
We discuss the problem of the vanishing of Poincare series. This problem is known to be related to the existence of weakly holomorphic forms with prescribed principal part. The obstruction to the existence is related to the pseudomodularity of Ramanu
In this paper, considering the Eichler-Shimura cohomology theory for Jacobi forms, we study connections between harmonic Maass-Jacobi forms and Jacobi integrals. As an application we study a pairing between two Jacobi integrals, which is defined by s
In this paper, we explicitly construct harmonic Maass forms that map to the weight one theta series associated by Hecke to odd ray class group characters of real quadratic fields. From this construction, we give precise arithmetic information contain
We introduce an L-series associated with harmonic Maass forms and prove their functional equations. We establish converse theorems for these L-series and, as an application, we formulate and prove a summation formula for the holomorphic part of a harmonic lift of a given cusp form.