ترغب بنشر مسار تعليمي؟ اضغط هنا

Future prospects in observational galaxy evolution: towards increased resolution

38   0   0.0 ( 0 )
 نشر من قبل Karl Glazebrook
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Karl Glazebrook




اسأل ChatGPT حول البحث

Future prospects in observational galaxy evolution are reviewed from a personal perspective. New insights will especially come from high-redshift integral field kinematic data and similar low-redshift observations in very large and definitive surveys. We will start to systematically probe the mass structures of galaxies and their haloes via lensing from new imaging surveys and upcoming near-IR spectroscopic surveys will finally obtain large numbers of rest frame optical spectra at high-redshift routinely. ALMA will be an important new ingredient, spatially resolving the molecular gas fuelling the high star-formation rates seen in the early Universe.

قيم البحث

اقرأ أيضاً

The study of extragalactic planetary nebulae (EPN) is a rapidly expanding field. The advent of powerful new instrumentation such as the PN spectrograph has led to an avalanche of new EPN discoveries both within and between galaxies. We now have thous ands of EPN detections in a heterogeneous selection of nearby galaxies and their local environments, dwarfing the combined galactic detection efforts of the last century. Key scientific motivations driving this rapid growth in EPN research and discovery have been the use of the PNLF as a standard candle, as dynamical tracers of their host galaxies and dark matter and as probes of Galactic evolution. This is coupled with the basic utility of PN as laboratories of nebula physics and the consequent comparison with theory where population differences, abundance variations and star formation history within and between stellar systems informs both stellar and galactic evolution. Here we pose some of the burning questions, discuss some of the observational challenges and outline some of the future prospects of this exciting, relatively new, research area as we strive to go fainter, image finer, see further and survey faster than ever before and over a wider wavelength regime
Galaxy spins can be predicted from the initial conditions in the early Universe through the tidal tensor twist. In simulations, their directions are well preserved through cosmic time, consistent with expectations of angular momentum conservation. We report a $sim 3 sigma$ detection of correlation between observed oriented directions of galaxy angular momenta and their predictions based on the initial density field reconstructed from the positions of SDSS galaxies. The detection is driven by a group of spiral galaxies classified by the Galaxy Zoo as (anti-)clockwise, with a modest improvement from adding galaxies from MaNGA and SAMI surveys. This is the first such detection of the oriented galaxy spin direction, which opens a way to use measurements of galaxy spins to probe fundamental physics in the early Universe.
The Low Frequency Array (LOFAR) is under construction in the Netherlands and in several surrounding European countries. In this contribution, we describe the layout and design of the telescope, with a particular emphasis on the imaging characteristic s of the array when used in its standard imaging mode. After briefly reviewing the calibration and imaging software used for LOFAR image processing, we show some recent results from the ongoing imaging commissioning efforts. We conclude by summarizing future prospects for the use of LOFAR in observing the little-explored low frequency Universe.
Galaxy evolution reveals itself not only through the evolving properties of galaxies themselves but also through its impact on the surrounding environment. The intergalactic medium in particular holds a fossil record of past galaxy activity, imprinte d on its thermodynamic and chemical properties. This is most easily discerned in small galaxy groups, where the gravitational heating of this gas renders it observable by X-ray telescopes while still leaving its properties highly susceptible to the effects of galactic feedback. X-ray observations of the hot gas in groups can therefore provide a view of galactic feedback history that can complement dedicated studies of AGN and star formation activity at low and high redshift. Based on high-quality X-ray data of a sample of nearby groups, we present initial results of such a study and discuss some implications for the AGN and star formation histories of the group members.
152 - Sultan Hassan 2020
Lyman-$alpha$ (Ly$alpha$) emitting galaxies are powerful tools to probe the late stages of cosmic reionization. The observed sudden drop in Ly$alpha$ fraction at $z>6$ is often interpreted as a sign of reionization, since the intergalactic medium (IG M) is more neutral and opaque to Ly$alpha$ photons. Crucially, this interpretation of the observations is only valid under the assumption that galaxies themselves experience a minimal evolution at these epochs. By modelling Ly$alpha$ radiative transfer effects in and around galaxies, we examine whether a change in the galactic properties can reproduce the observed drop in the Ly$alpha$ fraction. We find that an increase in the galactic neutral hydrogen content or a reduction in the outflow velocity toward higher redshift both lead to a lower Ly$alpha$ escape fraction, and can thus mimic an increasing neutral fraction of the IGM. We furthermore find that this change in galactic properties leads to systematically different Ly$alpha$ spectra which can be used to differentiate the two competing effects. Using the CANDELSz7 survey measurements which indicate slightly broader lines at $zsim 6$, we find that the scenario of a mere increase in the galactic column density towards higher $z$ is highly unlikely. We also show that a decrease in outflow velocity is not ruled out by existing data but leads to more prominent blue peaks at $z>6$. Our results caution the use of Ly$alpha$ observations to estimate the IGM neutral fraction without accounting for the potential change in the galactic properties, e.g., by mapping out the evolution of Ly$alpha$ spectral characteristics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا