ﻻ يوجد ملخص باللغة العربية
We show that the intermittent and self-similar fluctuations displayed by a slow crack during the propagation in a heterogeneous medium can be quantitatively described by an extension of a classical statistical model for fracture. The model yields the correct dynamical and morphological scaling, and allows to demonstrate that the scale invariance originates from the presence of a non-equilibrium, reversible, critical transition which in the presence of dissipation gives rise to self organized critical behaviour.
The unifying feature of glass formers (such as polymers, supercooled liquids, colloids, granulars, spin glasses, superconductors, ...) is a sluggish dynamics at low temperatures. Indeed, their dynamics is so slow that thermal equilibrium is never rea
We present a full description of the nonergodic properties of wavefunctions on random graphs without boundary in the localized and critical regimes of the Anderson transition. We find that they are characterized by two critical localization lengths:
We numerically study the measurement-driven quantum phase transition of Haar-random quantum circuits in $1+1$ dimensions. By analyzing the tripartite mutual information we are able to make a precise estimate of the critical measurement rate $p_c = 0.
We use the dynamical mean-field approximation to study singularities in the self-energy and a two-particle irreducible vertex induced by the metal-insulator transition of the disordered Falicov-Kimball model. We set general conditions for the existen
Spin glasses and many-body localization (MBL) are prime examples of ergodicity breaking, yet their physical origin is quite different: the former phase arises due to rugged classical energy landscape, while the latter is a quantum-interference effect