ترغب بنشر مسار تعليمي؟ اضغط هنا

A fair comparison of many max-tree computation algorithms (Extended version of the paper submitted to ISMM 2013

49   0   0.0 ( 0 )
 نشر من قبل Edwin Carlinet
 تاريخ النشر 2012
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

With the development of connected filters for the last decade, many algorithms have been proposed to compute the max-tree. Max-tree allows to compute the most advanced connected operators in a simple way. However, no fair comparison of algorithms has been proposed yet and the choice of an algorithm over an other depends on many parameters. Since the need of fast algorithms is obvious for production code, we present an in depth comparison of five algorithms and some variations of them in a unique framework. Finally, a decision tree will be proposed to help user in choosing the right algorithm with respect to their data.

قيم البحث

اقرأ أيضاً

48 - Borui Li , Chundi Mu , Tao Wang 2014
This is a revised version of our paper published in Journal of Convergence Information Technology(JCIT): Comparison of Feature Point Extraction Algorithms for Vision Based Autonomous Aerial Refueling. We corrected some errors including measurement un it errors, spelling errors and so on. Since the published papers in JCIT are not allowed to be modified, we submit the revised version to arXiv.org to make the paper more rigorous and not to confuse other researchers.
Simple stochastic games are turn-based 2.5-player zero-sum graph games with a reachability objective. The problem is to compute the winning probability as well as the optimal strategies of both players. In this paper, we compare the three known class es of algorithms -- value iteration, strategy iteration and quadratic programming -- both theoretically and practically. Further, we suggest several improvements for all algorithms, including the first approach based on quadratic programming that avoids transforming the stochastic game to a stopping one. Our extensive experiments show that these improvements can lead to significant speed-ups. We implemented all algorithms in PRISM-games 3.0, thereby providing the first implementation of quadratic programming for solving simple stochastic games.
For fixed positive integers $r, k$ and $ell$ with $1 leq ell < r$ and an $r$-uniform hypergraph $H$, let $kappa (H, k,ell)$ denote the number of $k$-colorings of the set of hyperedges of $H$ for which any two hyperedges in the same color class inters ect in at least $ell$ elements. Consider the function $KC(n,r,k,ell)=max_{Hin{mathcal H}_{n}} kappa (H, k,ell) $, where the maximum runs over the family ${mathcal H}_n$ of all $r$-uniform hypergraphs on $n$ vertices. In this paper, we determine the asymptotic behavior of the function $KC(n,r,k,ell)$ for every fixed $r$, $k$ and $ell$ and describe the extremal hypergraphs. This variant of a problem of ErdH{o}s and Rothschild, who considered edge colorings of graphs without a monochromatic triangle, is related to the ErdH{o}s--Ko--Rado Theorem on intersecting systems of sets [Intersection Theorems for Systems of Finite Sets, Quarterly Journal of Mathematics, Oxford Series, Series 2, {bf 12} (1961), 313--320].
167 - Siu-Wing Cheng , Yuchen Mao 2018
The restricted max-min fair allocation problem seeks an allocation of resources to players that maximizes the minimum total value obtained by any player. It is NP-hard to approximate the problem to a ratio less than 2. Comparing the current best algo rithm for estimating the optimal value with the current best for constructing an allocation, there is quite a gap between the ratios that can be achieved in polynomial time: roughly 4 for estimation and roughly $6 + 2sqrt{10}$ for construction. We propose an algorithm that constructs an allocation with value within a factor of $6 + delta$ from the optimum for any constant $delta > 0$. The running time is polynomial in the input size for any constant $delta$ chosen.
The tree-level two-point amplitudes for the transitions $jf to j^{, prime} f^{, prime}$, where $f$ is a fermion and $j$ is a generalized current, in a constant uniform magnetic field of an arbitrary strength and in charged fermion plasma, for the $jf $ interaction vertices of the scalar, pseudoscalar, vector and axial-vector types have been investigated. The particular cases of a very strong magnetic field, and of the coherent scattering off the real fermions without change of their states (the forward scattering) have been analysed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا