ﻻ يوجد ملخص باللغة العربية
We report on the observation of excitation of Majorana fermions in a Nb-InSb nanowire quantum dot-Nb hybrid system. The InSb nanowire quantum dot is formed between the two Nb contacts by weak Schottky barriers and is thus in the regime of strong couplings to the contacts. Due to the proximity effect, the InSb nanowire segments covered by superconductor Nb contacts turn to superconductors with a superconducting energy gap $Delta^*$. Under an applied magnetic field larger than a critical value for which the Zeeman energy in the InSb nanowire is $E_zsim Delta^*$, the entire InSb nanowire is found to be in a nontrivial topological superconductor phase, supporting a pair of Majorana fermions, and Cooper pairs can transport between the superconductor Nb contacts via the Majorana fermion states. This transport process will be suppressed when the applied magnetic field becomes larger than a second critical value at which the transition to a trivial topological superconductor phase occurs in the system. This physical scenario has been observed in our experiment. We have found that the measured zero-bias conductance for our hybrid device shows a conductance plateau in a range of the applied magnetic field in quasi-particle Coulomb blockade regions.
We report on the fabrication and measurements of planar mesoscopic Josephson junctions formed by InAs nanowires coupled to superconducting Nb terminals. The use of Si-doped InAs-nanowires with different bulk carrier concentrations allowed to tune the
Majorana fermions are particles identical to their own antiparticles. They have been theoretically predicted to exist in topological superconductors. We report electrical measurements on InSb nanowires contacted with one normal (Au) and one supercond
We experimentally studied the Josephson supercurrent in Nb/InN-nanowire/Nb junctions. Large critical currents up to 5.7 $mu$A have been achieved, which proves the good coupling of the nanowire to the superconductor. The effect of a magnetic field per
We study the low-energy transport properties of a hybrid device composed by a native quantum dot coupled to both ends of a topological superconducting nanowire section hosting Majorana zero-modes. The account of the coupling between the dot and the f
Motivated by recent experiments searching for Majorana fermions (MFs) in hybrid semiconducting-superconducting nanostructures, we consider a realistic tight-binding model and analyze its transport behavior numerically. In particular, we take into acc