ﻻ يوجد ملخص باللغة العربية
In the context of the fuzzball programme, we investigate deforming the microscopic string description of the D1-D5 system on T^4xS^1 away from the orbifold point. Using conformal perturbation theory and a generalization of Lunin-Mathur symmetric orbifold technology for computing twist-nontwist correlators developed in a companion work, we initiate a program to compute the anomalous dimensions of low-lying string states in the D1-D5 superconformal field theory. Our method entails finding four-point functions involving a string operator O of interest and the deformation operator, taking coincidence limits to identify which other operators mix with O, subtracting the identified conformal family to isolate other contributions to the four-point function, finding the mixing coefficients, and iterating. For the lowest-lying string modes, this procedure should truncate in a finite number of steps. We check our method by showing how the operator dual to the dilaton does not participate in mixing that would change its conformal dimension, as expected. Next we complete the first stage of the iteration procedure for a low-lying string state of the form partial X partial X barpartial X barpartial X and find its mixing coefficient. Our main qualitative result is evidence of operator mixing at first order in the deformation parameter, which means that the string state acquires an anomalous dimension. After diagonalization this will mean that anomalous dimensions of some string states in the D1-D5 SCFT must decrease away from the orbifold point while others increase.
We consider states of the D1-D5 CFT where only the left-moving sector is excited. As we deform away from the orbifold point, some of these states will remain BPS while others can `lift. We compute this lifting for a particular family of D1-D5-P state
We examine the large $N$ 1/4-BPS spectrum of the symmetric orbifold CFT Sym$^N(M)$ deformed to the supergravity point in moduli space for $M= K3$ and $T^4$. We consider refinement under both left- and right-moving $SU(2)_R$ symmetries of the supercon
We briefly review the microscopic modeling of black holes as bound states of branes in the context of the soluble D1-D5 system. We present a discussion of the low energy brane dynamics and account for black hole thermodynamics and Hawking radiation r
We study a class of Little String Theories (LSTs) of A type, described by $N$ parallel M5-branes spread out on a circle and which in the low energy regime engineer supersymmetric gauge theories with $U(N)$ gauge group. The BPS states in this setting
We introduce a new approach to find the Tomita-Takesaki modular flow for multi-component regions in general chiral conformal field theory. Our method is based on locality and analyticity of primary fields as well as the so-called Kubo-Martin-Schwinge