ترغب بنشر مسار تعليمي؟ اضغط هنا

Ising n-fold integrals as diagonals of rational functions and integrality of series expansions

259   0   0.0 ( 0 )
 نشر من قبل J. M. Maillard
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that the n-fold integrals $chi^{(n)}$ of the magnetic susceptibility of the Ising model, as well as various other n-fold integrals of the Ising class, or n-fold integrals from enumerative combinatorics, like lattice Green functions, correspond to a distinguished class of function generalising algebraic functions: they are actually diagonals of rational functions. As a consequence, the power series expansions of the, analytic at x=0, solutions of these linear differential equations Derived From Geometry are globally bounded, which means that, after just one rescaling of the expansion variable, they can be cast into series expansions with integer coefficients. We also give several results showing that the unique analytical solution of Calabi-Yau ODEs, and, more generally, Picard-Fuchs linear ODEs, with solutions of maximal weights, are always diagonal of rational functions. Besides, in a more enumerative combinatorics context, generating functions whose coefficients are expressed in terms of nested sums of products of binomial terms can also be shown to be diagonals of rational functions. We finally address the question of the relations between the notion of integrality (series with integer coefficients, or, more generally, globally bounded series) and the modularity of ODEs.



قيم البحث

اقرأ أيضاً

We show that the n-fold integrals $chi^{(n)}$ of the magnetic susceptibility of the Ising model, as well as various other n-fold integrals of the Ising class, or n-fold integrals from enumerative combinatorics, like lattice Green functions, are actua lly diagonals of rational functions. As a consequence, the power series expansions of these solutions of linear differential equations Derived From Geometry are globally bounded, which means that, after just one rescaling of the expansion variable, they can be cast into series expansions with integer coefficients. Besides, in a more enumerative combinatorics context, we show that generating functions whose coefficients are expressed in terms of nested sums of products of binomial terms can also be shown to be diagonals of rational functions. We give a large set of results illustrating the fact that the unique analytical solution of Calabi-Yau ODEs, and more generally of MUM ODEs, is, almost always, diagonal of rational functions. We revisit Christols conjecture that globally bounded series of G-operators are necessarily diagonals of rational functions. We provide a large set of examples of globally bounded series, or series with integer coefficients, associated with modular forms, or Hadamard product of modular forms, or associated with Calabi-Yau ODEs, underlying the concept of modularity. We finally address the question of the relations between the notion of integrality (series with integer coefficients, or, more generally, globally bounded series) and the modularity (in particular integrality of the Taylor coefficients of mirror map), introducing new representations of Yukawa couplings.
We provide a set of diagonals of simple rational functions of three and four variables that are squares of Heun functions. These Heun functions obtained through creative telescoping, turn out to be either pullbacked $_2F_1$ hypergeometric functions a nd in fact classical modular forms. We also obtain Heun functions that are Shimura curves as solutions of telescopers of rational functions.
We recall that diagonals of rational functions naturally occur in lattice statistical mechanics and enumerative combinatorics. We find that a seven-parameter rational function of three variables with a numerator equal to one (reciprocal of a polynomi al of degree two at most) can be expressed as a pullbacked 2F1 hypergeometric function. This result can be seen as the simplest non-trivial family of diagonals of rational functions. We focus on some subcases such that the diagonals of the corresponding rational functions can be written as a pullbacked 2F1 hypergeometric function with two possible rational functions pullbacks algebraically related by modular equations, thus showing explicitely that the diagonal is a modular form. We then generalise this result to eight, nine and ten parameters families adding some selected cubic terms at the denominator of the rational function defining the diagonal. We finally show that each of these previous rational functions yields an infinite number of rational functions whose diagonals are also pullbacked 2F1 hypergeometric functions and modular forms.
We introduce some multiple integrals that are expected to have the same singularities as the singularities of the $ n$-particle contributions $chi^{(n)}$ to the susceptibility of the square lattice Ising model. We find the Fuchsian linear differentia l equation satisfied by these multiple integrals for $ n=1, 2, 3, 4$ and only modulo some primes for $ n=5$ and $ 6$, thus providing a large set of (possible) new singularities of the $chi^{(n)}$. We discuss the singularity structure for these multiple integrals by solving the Landau conditions. We find that the singularities of the associated ODEs identify (up to $n= 6$) with the leading pinch Landau singularities. The second remarkable obtained feature is that the singularities of the ODEs associated with the multiple integrals reduce to the singularities of the ODEs associated with a {em finite number of one dimensional integrals}. Among the singularities found, we underline the fact that the quadratic polynomial condition $ 1+3 w +4 w^2 = 0$, that occurs in the linear differential equation of $ chi^{(3)}$, actually corresponds to a remarkable property of selected elliptic curves, namely the occurrence of complex multiplication. The interpretation of complex multiplication for elliptic curves as complex fixed points of the selected generators of the renormalization group, namely isogenies of elliptic curves, is sketched. Most of the other singularities occurring in our multiple integrals are not related to complex multiplication situations, suggesting an interpretation in terms of (motivic) mathematical structures beyond the theory of elliptic curves.
75 - Yilin Chen 2021
In this note, we derive the closed-form expression for the summation of series $sum_{n=0}^{infty}nJ_n(x)partial J_n/partial n$, which is found in the calculation of entanglement entropy in 2-d bosonic free field, in terms of $Y_0$, $J_0$ and an integ ral involving these two Bessel functions. Further, we point out the integral can be expressed as a Meijer G function.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا