ترغب بنشر مسار تعليمي؟ اضغط هنا

Singularities of $n$-fold integrals of the Ising class and the theory of elliptic curves

141   0   0.0 ( 0 )
 نشر من قبل J. M. Maillard
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce some multiple integrals that are expected to have the same singularities as the singularities of the $ n$-particle contributions $chi^{(n)}$ to the susceptibility of the square lattice Ising model. We find the Fuchsian linear differential equation satisfied by these multiple integrals for $ n=1, 2, 3, 4$ and only modulo some primes for $ n=5$ and $ 6$, thus providing a large set of (possible) new singularities of the $chi^{(n)}$. We discuss the singularity structure for these multiple integrals by solving the Landau conditions. We find that the singularities of the associated ODEs identify (up to $n= 6$) with the leading pinch Landau singularities. The second remarkable obtained feature is that the singularities of the ODEs associated with the multiple integrals reduce to the singularities of the ODEs associated with a {em finite number of one dimensional integrals}. Among the singularities found, we underline the fact that the quadratic polynomial condition $ 1+3 w +4 w^2 = 0$, that occurs in the linear differential equation of $ chi^{(3)}$, actually corresponds to a remarkable property of selected elliptic curves, namely the occurrence of complex multiplication. The interpretation of complex multiplication for elliptic curves as complex fixed points of the selected generators of the renormalization group, namely isogenies of elliptic curves, is sketched. Most of the other singularities occurring in our multiple integrals are not related to complex multiplication situations, suggesting an interpretation in terms of (motivic) mathematical structures beyond the theory of elliptic curves.


قيم البحث

اقرأ أيضاً

We consider families of multiple and simple integrals of the ``Ising class and the linear ordinary differential equations with polynomial coefficients they are solutions of. We compare the full set of singularities given by the roots of the head poly nomial of these linear ODEs and the subset of singularities occurring in the integrals, with the singularities obtained from the Landau conditions. For these Ising class integrals, we show that the Landau conditions can be worked out, either to give the singularities of the corresponding linear differential equation or the singularities occurring in the integral. The singular behavior of these integrals is obtained in the self-dual variable $w= s/2/(1+s^2)$, with $s= sinh(2K)$, where $K=J/kT$ is the usual Ising model coupling constant. Switching to the variable $s$, we show that the singularities of the analytic continuation of series expansions of these integrals actually break the Kramers-Wannier duality. We revisit the singular behavior (J. Phys. A {bf 38} (2005) 9439-9474) of the third contribution to the magnetic susceptibility of Ising model $chi^{(3)}$ at the points $1+3w+4w^2= 0$ and show that $chi^{(3)}(s)$ is not singular at the corresponding points inside the unit circle $| s |=1$, while its analytical continuation in the variable $s$ is actually singular at the corresponding points $ 2+s+s^2=0$ oustside the unit circle ($| s | > 1$).
359 - B. M. McCoy , J-M. Maillard 2016
We present the reduction of the correlation functions of the Ising model on the anisotropic square lattice to complete elliptic integrals of the first, second and third kind, the extension of Kramers-Wannier duality to anisotropic correlation functio ns, and the linear differential equations for these anisotropic correlations. More precisely, we show that the anisotropic correlation functions are homogeneous polynomials of the complete elliptic integrals of the first, second and third kind. We give the exact dual transformation matching the correlation functions and the dual correlation functions. We show that the linear differential operators annihilating the general two-point correlation functions are factorised in a very simple way, in operators of decreasing orders.
We show that the n-fold integrals $chi^{(n)}$ of the magnetic susceptibility of the Ising model, as well as various other n-fold integrals of the Ising class, or n-fold integrals from enumerative combinatorics, like lattice Green functions, correspon d to a distinguished class of function generalising algebraic functions: they are actually diagonals of rational functions. As a consequence, the power series expansions of the, analytic at x=0, solutions of these linear differential equations Derived From Geometry are globally bounded, which means that, after just one rescaling of the expansion variable, they can be cast into series expansions with integer coefficients. We also give several results showing that the unique analytical solution of Calabi-Yau ODEs, and, more generally, Picard-Fuchs linear ODEs, with solutions of maximal weights, are always diagonal of rational functions. Besides, in a more enumerative combinatorics context, generating functions whose coefficients are expressed in terms of nested sums of products of binomial terms can also be shown to be diagonals of rational functions. We finally address the question of the relations between the notion of integrality (series with integer coefficients, or, more generally, globally bounded series) and the modularity of ODEs.
We show that the n-fold integrals $chi^{(n)}$ of the magnetic susceptibility of the Ising model, as well as various other n-fold integrals of the Ising class, or n-fold integrals from enumerative combinatorics, like lattice Green functions, are actua lly diagonals of rational functions. As a consequence, the power series expansions of these solutions of linear differential equations Derived From Geometry are globally bounded, which means that, after just one rescaling of the expansion variable, they can be cast into series expansions with integer coefficients. Besides, in a more enumerative combinatorics context, we show that generating functions whose coefficients are expressed in terms of nested sums of products of binomial terms can also be shown to be diagonals of rational functions. We give a large set of results illustrating the fact that the unique analytical solution of Calabi-Yau ODEs, and more generally of MUM ODEs, is, almost always, diagonal of rational functions. We revisit Christols conjecture that globally bounded series of G-operators are necessarily diagonals of rational functions. We provide a large set of examples of globally bounded series, or series with integer coefficients, associated with modular forms, or Hadamard product of modular forms, or associated with Calabi-Yau ODEs, underlying the concept of modularity. We finally address the question of the relations between the notion of integrality (series with integer coefficients, or, more generally, globally bounded series) and the modularity (in particular integrality of the Taylor coefficients of mirror map), introducing new representations of Yukawa couplings.
We study the Ising model two-point diagonal correlation function $ C(N,N)$ by presenting an exponential and form factor expansion in an integral representation which differs from the known expansion of Wu, McCoy, Tracy and Barouch. We extend this exp ansion, weighting, by powers of a variable $lambda$, the $j$-particle contributions, $ f^{(j)}_{N,N}$. The corresponding $ lambda$ extension of the two-point diagonal correlation function, $ C(N,N; lambda)$, is shown, for arbitrary $lambda$, to be a solution of the sigma form of the Painlev{e} VI equation introduced by Jimbo and Miwa. Linear differential equations for the form factors $ f^{(j)}_{N,N}$ are obtained and shown to have both a ``Russian doll nesting, and a decomposition of the differential operators as a direct sum of operators equivalent to symmetric powers of the differential operator of the elliptic integral $ E$. Each $ f^{(j)}_{N,N}$ is expressed polynomially in terms of the elliptic integrals $ E$ and $ K$. The scaling limit of these differential operators breaks the direct sum structure but not the ``Russian doll structure. The previous $ lambda$-extensions, $ C(N,N; lambda)$ are, for singled-out values $ lambda= cos(pi m/n)$ ($m, n$ integers), also solutions of linear differential equations. These solutions of Painleve VI are actually algebraic functions, being associated with modular curves.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا