ترغب بنشر مسار تعليمي؟ اضغط هنا

Thermodynamic Consistency of the Dynamical Mean-Field Theory of the Double-Exchange Model

127   0   0.0 ( 0 )
 نشر من قبل Juana Moreno
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Randy S. Fishman




اسأل ChatGPT حول البحث

Although diagrammatic perturbation theory fails for the dynamical-mean field theory of the double-exchange model, the theory is nevertheless Phi-derivable and hence thermodynamically consistent, meaning that the same thermodynamic properties are obtained from either the partition function or the Greens function. We verify this consistency by evaluating the magnetic susceptibility and Curie temperature for any Hunds coupling.



قيم البحث

اقرأ أيضاً

We derive a set of equations expressing the parameters of the magnetic interactions characterizing a strongly correlated electronic system in terms of single-electron Greens functions and self-energies. This allows to establish a mapping between the initial electronic system and a spin model including up to quadratic interactions between the effective spins, with a general interaction (exchange) tensor that accounts for anisotropic exchange, Dzyaloshinskii-Moriya interaction and other symmetric terms such as dipole-dipole interaction. We present the formulas in a format that can be used for computations via Dynamical Mean Field Theory algorithms.
The dynamical mean-field theory (DMFT) is a widely applicable approximation scheme for the investigation of correlated quantum many-particle systems on a lattice, e.g., electrons in solids and cold atoms in optical lattices. In particular, the combin ation of the DMFT with conventional methods for the calculation of electronic band structures has led to a powerful numerical approach which allows one to explore the properties of correlated materials. In this introductory article we discuss the foundations of the DMFT, derive the underlying self-consistency equations, and present several applications which have provided important insights into the properties of correlated matter.
189 - Kristjan Haule 2015
We propose a continuum representation of the Dynamical Mean Field Theory, in which we were able to derive an exact overlap between the Dynamical Mean Field Theory and band structure methods, such as the Density Functional Theory. The implementation o f this exact double-counting shows improved agreement between theory and experiment in several correlated solids, such as the transition metal oxides and lanthanides. Previously introduced nominal double-counting is in much better agreement with the exact double-counting than most widely used fully localized limit formula.
309 - H. Park , K. Haule , G. Kotliar 2008
We address the nature of the Mott transition in the Hubbard model at half-filling using cluster Dynamical Mean Field Theory (DMFT). We compare cluster DMFT results with those of single site DMFT. We show that inclusion of the short range correlations on top of the on-site correlations, already treated exactly in single site DMFT, do not change the nature of the transition between the paramagnetic metal and the paramagnetic Mott insulator, which remains first order. However, the short range correlations reduce substantially the critical $U$ and modify the shape of transition lines. Moreover, they lead to very different physical properties of the metallic and insulating phases near the transition, in particular in the region of the phase diagram where the two solutions coexist. Approaching the transition from the metallic side, we find an anomalous metallic state with very low coherence scale at temperatures as low as $T=0.01t$. The insulating state is characterized by the relatively narrow Mott gap with pronounced peaks at the gap edge.
Dynamical mean field methods are used to calculate the phase diagram, many-body density of states, relative orbital occupancy and Fermi surface shape for a realistic model of $LaNiO_3$-based superlattices. The model is derived from density functional band calculations and includes oxygen orbitals. The combination of the on-site Hunds interaction and charge-transfer between the transition metal and the oxygen orbitals is found to reduce the orbital polarization far below the levels predicted either by band structure calculations or by many-body analyses of Hubbard-type models which do not explicitly include the oxygen orbitals. The findings indicate that heterostructuring is unlikely to produce one band model physics and demonstrate the fundamental inadequacy of modeling the physics of late transition metal oxides with Hubbard-like models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا