ﻻ يوجد ملخص باللغة العربية
The macroscopic transport properties in a disordered potential, namely diffusion and weak/strong localization, closely depend on the microscopic and statistical properties of the disorder itself. This dependence is rich of counter-intuitive consequences. It can be particularly exploited in matter wave experiments, where the disordered potential can be tailored and controlled, and anisotropies are naturally present. In this work, we apply a perturbative microscopic transport theory and the self-consistent theory of Anderson localization to study the transport properties of ultracold atoms in anisotropic 2D and 3D speckle potentials. In particular, we discuss the anisotropy of single-scattering, diffusion and localization. We also calculate a disorder-induced shift of the energy states and propose a method to include it, which amounts to renormalize energies in the standard on-shell approximation. We show that the renormalization of energies strongly affects the prediction for the 3D localization threshold (mobility edge). We illustrate the theoretical findings with examples which are revelant for current matter wave experiments, where the disorder is created with a laser speckle. This paper provides a guideline for future experiments aiming at the precise location of the 3D mobility edge and study of anisotropic diffusion and localization effects in 2D and 3D.
We study quantum transport in anisotropic 3D disorder and show that non rotation invariant correlations can induce rich diffusion and localization properties. For instance, structured finite-range correlations can lead to the inversion of the transpo
We describe non-conventional localization of the midband E=0 state in square and cubic finite bipartite lattices with off-diagonal disorder by solving numerically the linear equations for the corresponding amplitudes. This state is shown to display m
A random lattice model with dilute interlayer bonds of density $p$ is proposed to describe the underdoped high--$T_c$ cuprates. We show analytically via an appropriate perturbation expansion and verify independently by numerical scaling of the conduc
We study transport properties of graphene with anisotropically distributed on-site impurities (adatoms) that are randomly placed on every third line drawn along carbon bonds. We show that stripe states characterized by strongly suppressed back-scatte
Effect of short-range disorder on the excited states of the exciton is studied. Disorder causes an obvious effect of broadening. Microscopically, an exciton, as an entity, is scattered by the large-scale disorder fluctuations. Much less trivial is th