ترغب بنشر مسار تعليمي؟ اضغط هنا

Equivalence of single-particle and transport lifetimes from hybridization fluctuations

54   0   0.0 ( 0 )
 نشر من قبل Indranil Paul
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Single band theories of quantum criticality successfully describe a single-particle lifetime with non-Fermi liquid temperature dependence. But, they fail to obtain a charge transport rate with the same dependence unless the interaction is assumed to be momentum independent. Here we demonstrate that a quantum critical material, with a long range mode that transmutes electrons between light and heavy bands, exhibits a quasi-linear temperature dependence for {it both} the single-particle and the charge transport lifetimes, despite the strong momentum dependence of the interaction.

قيم البحث

اقرأ أيضاً

The multi-orbital Hubbard model is known to host various ordered states such as antiferromagnetism, ferromagnetism and orbital-order. Here we propose an engineered system - an ultrathin SrVO$_3$ film - to realize all said orders upon carrier doping, achievable with realistic gate-voltages. As a central observation we find that throughout the phase diagram, dominant non-local fluctuations lead to a momentum differentiation of the self-energy, particularly the scattering rate. In contrast to the pseudogap behavior in the one-band Hubbard model, here in the multi-band case the differentiation is between momenta on the occupied and unoccupied side of the Fermi surface. Our work, based on the dynamical vertex approximation, hence complements the understanding of spectral signatures of nearby second order phase transitions and calls to reexamine the momentum differentiation in other systems using methods beyond dynamical mean-field theory.
Motivated by recent photoemission and pump-probe experiments, we report determinant Quantum Monte Carlo simulations of hybridization fluctuations in the half-filled periodic Anderson model. A tentative phase diagram is constructed based solely on hyb ridization fluctuation spectra and reveals a crossover regime between an unhybridized selective Mott state and a fully hybridized Kondo insulating state. This intermediate phase exhibits nonlocal hybridization fluctuations and consequentially the so-called band bending and a direct hybridization gap as observed in angle-resolved photoemission spectroscopy and optical conductivity. This connects the band bending with the nonlocal hybridization fluctuations as proposed in latest ultrafast optical pump-probe experiment. The Kondo insulating state is only established at lower temperatures with the development of sufficiently strong inter-site hybridization correlations. Our work suggests a unified picture for interpreting recent photoemission, pump-probe, and optical observations and provides numerical evidences for the importance of hybridization fluctuations in heavy fermion physics.
We study optimally doped Bi-2212 ($T_textrm{c}=96$~K) using femtosecond time- and angle-resolved photoelectron spectroscopy. Energy-resolved population lifetimes are extracted and compared with single-particle lifetimes measured by equilibrium photoe mission. The population lifetimes deviate from the single-particle lifetimes in the low excitation limit by one to two orders of magnitude. Fundamental considerations of electron scattering unveil that these two lifetimes are in general distinct, yet for systems with only electron-phonon scattering they should converge in the low-temperature, low-fluence limit. The qualitative disparity in our data, even in this limit, suggests that scattering channels beyond electron-phonon interactions play a significant role in the electron dynamics of cuprate superconductors.
The Bardeen-Cooper-Schrieffer mechanism for superconductivity is a triumph of the theory of many-body systems. Implicit in its formulation is the existence of long-lived (quasi)particles, originating from the electronic building blocks of the materia ls, which interact to form Cooper pairs that move coherently in lock-step. The challenge of unconventional superconductors is that it is not only unclear what the nature of the interactions are, but whether the familiar quasi-particles that form a superconducting condensate even exist. In this work, we reveal, by the study of applied magnetic field in electronically diluted materials, that the metallic properties of the unconventional superconductor CeCoIn$_5$ are determined by the degree of quantum entanglement that (Kondo) hybridizes local and itinerant electrons. This work suggests that the properties of the strange metallic state are a reflection of the disentanglement of the many-body state into the underlying electronic building blocks of the system itself.
Semiconducting skutterudite CeFe$_4$P$_{12}$ is investigated by synchrotron x-ray photoemission spectroscopy (PES) and x-ray absorption spectroscopy (XAS). Ce 3$d$ core-level PES and 3$d-4f$ XAS, in combination with single impurity Anderson model (SI AM) calculations, confirm features due to $f^0$, $f^1$ and $f^2$ configurations. The Ce 4$f$ density of states (DOS) indicates absence of a Kondo resonance at Fermi level, but can still be explained by SIAM with a small gap in non-$f$ DOS. While Ce 4$f$ partial DOS from band structure calculations are also consistent with the main Ce 4$f$ DOS, the importance of SIAM for core and valence spectra indicates Kondo semiconducting mixed valence for CeFe$_4$P$_{12}$, derived from strong hybridization between non-$f$ conduction and Ce 4$f$ DOS.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا