ﻻ يوجد ملخص باللغة العربية
Motivated by recent photoemission and pump-probe experiments, we report determinant Quantum Monte Carlo simulations of hybridization fluctuations in the half-filled periodic Anderson model. A tentative phase diagram is constructed based solely on hybridization fluctuation spectra and reveals a crossover regime between an unhybridized selective Mott state and a fully hybridized Kondo insulating state. This intermediate phase exhibits nonlocal hybridization fluctuations and consequentially the so-called band bending and a direct hybridization gap as observed in angle-resolved photoemission spectroscopy and optical conductivity. This connects the band bending with the nonlocal hybridization fluctuations as proposed in latest ultrafast optical pump-probe experiment. The Kondo insulating state is only established at lower temperatures with the development of sufficiently strong inter-site hybridization correlations. Our work suggests a unified picture for interpreting recent photoemission, pump-probe, and optical observations and provides numerical evidences for the importance of hybridization fluctuations in heavy fermion physics.
Two very different methods -- exact diagonalization on finite chains and a variational method -- are used to study the possibility of a metal-insulator transition in the symmetric half-filled periodic Anderson-Hubbard model. With this aim we calculat
Recently, dynamical mean field theory calculations have shown that kinks emerge in the real part of the self energy of strongly correlated metals close to the Fermi level. This gives rise to a similar behavior in the quasi-particle dispersion relatio
The Kondo and Periodic Anderson Model (PAM) are known to provide a microscopic picture of many of the fundamental properties of heavy fermion materials and, more generally, a variety of strong correlation phenomena in $4f$ and $5f$ systems. In this p
Using a self-consistent Hartree-Fock approximation we investigate the relative stability of various stripe phases in the extended $t$-$t$-$U$ Hubbard model. One finds that a negative ratio of next- to nearest-neighbor hopping $t/t<0$ expells holes fr
The variational cluster approach (VCA) based on the self-energy functional theory is applied to the two-dimensional symmetric periodic Anderson model at half filling. We calculate a variety of physical quantities including the staggered moments and s