ترغب بنشر مسار تعليمي؟ اضغط هنا

Chemistry in Disks VIII: the CS molecule as an analytic tracer of turbulence in disks

309   0   0.0 ( 0 )
 نشر من قبل St\\'ephane Guilloteau
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Turbulence is thought to be a key driver of the evolution of protoplanetary disks, regulating the mass accretion process, the transport of angular momentum, and the growth of dust particles. We intend to determine the magnitude of the turbulent motions in the outer parts (> 100 AU) of the disk surrounding DM Tau. Turbulent motions can be constrained by measuring the nonthermal broadening of line emission from heavy molecules. We used the IRAM Plateau de Bure interferometer to study emission from the CS molecule in the disk of DM Tau. High spatial (1.4 x 1 ) and spectral resolution (0.126 km/s) CS J=3-2 images provide constraints on the molecule distribution and velocity structure of the disk. A low sensitivity CS J=5-4 image was used in conjunction to evaluate the excitation conditions. We analyzed the data in terms of two parametric disk models, and compared the results with detailed time-dependent chemical simulations. The CS data confirm the relatively low temperature suggested by observations of other simple molecules. The intrinsic linewidth derived from the CS J=3-2 data is much larger than expected from pure thermal broadening. The magnitude of the derived nonthermal component depends only weakly on assumptions about the location of the CS molecules with respect to the disk plane. Our results indicate turbulence with a Mach number around 0.4 - 0.5 in the molecular layer. Geometrical constraints suggest that this layer is located near one scale height, in reasonable agreement with chemical model predictions.

قيم البحث

اقرأ أيضاً

M-stars are the most common hosts of planetary systems in the Galaxy. Protoplanetary disks around M-stars thus offer a prime opportunity to study the chemistry of planet-forming environments. We present an ALMA survey of molecular line emission towar d a sample of five protoplanetary disks around M4-M5 stars (FP Tau, J0432+1827, J1100-7619, J1545-3417, and Sz 69). These observations can resolve chemical structures down to tens of AU. Molecular lines of $^{12}$CO, $^{13}$CO, C$^{18}$O, C$_2$H, and HCN are detected toward all five disks. Lines of H$_2$CO and DCN are detected toward 2/5 and 1/5 disks, respectively. For disks with resolved C$^{18}$O, C$_2$H, HCN, and H$_2$CO emission, we observe substructures similar to those previously found in disks around solar-type stars (e.g., rings, holes, and plateaus). C$_2$H and HCN excitation conditions estimated interior to the pebble disk edge for the bright disk J1100-7619 are consistent with previous measurements around solar-type stars. The correlation previously found between C$_2$H and HCN fluxes for solar-type disks extends to our M4-M5 disk sample, but the typical C$_2$H/HCN ratio is higher for the M4-M5 disk sample. This latter finding is reminiscent of the hydrocarbon enhancements found by previous observational infrared surveys in the innermost ($<$10AU) regions of M-star disks, which is intriguing since our disk-averaged fluxes are heavily influenced by flux levels in the outermost disk, exterior to the pebble disk edge. Overall, most of the observable chemistry at 10-100AU appears similar for solar-type and M4-M5 disks, but hydrocarbons may be more abundant around the cooler stars.
The volatile composition of a planet is determined by the inventory of gas and ice in the parent disk. The volatile chemistry in the disk is expected to evolve over time, though this evolution is poorly constrained observationally. We present ALMA ob servations of C18O, C2H, and the isotopologues H13CN, HC15N, and DCN towards five Class 0/I disk candidates. Combined with a sample of fourteen Class II disks presented in Bergner et al. (2019b), this data set offers a view of volatile chemical evolution over the disk lifetime. Our estimates of C18O abundances are consistent with a rapid depletion of CO in the first ~0.5-1 Myr of the disk lifetime. We do not see evidence that C2H and HCN formation are enhanced by CO depletion, possibly because the gas is already quite under-abundant in CO. Further CO depletion may actually hinder their production by limiting the gas-phase carbon supply. The embedded sources show several chemical differences compared to the Class II stage, which seem to arise from shielding of radiation by the envelope (impacting C2H formation and HC15N fractionation) and sublimation of ices from infalling material (impacting HCN and C18O abundances). Such chemical differences between Class 0/I and Class II sources may affect the volatile composition of planet-forming material at different stages in the disk lifetime.
88 - D. Semenov 2018
Context. Several sulfur-bearing molecules are observed in the interstellar medium and in comets, in strong contrast to protoplanetary disks where only CS, H$_2$CS and SO have been detected so far. Aims. We combine observations and chemical models to constrain the sulfur abundances and their sensitivity to physical and chemical conditions in the DM Tau protoplanetary disk. Methods. We obtained $0.5^{}$ ALMA observations of DM Tau in Bands 4 and 6 in lines of CS, SO, SO$_2$, OCS, CCS, H$_2$CS and H$_2$S, achieving a $sim 5$ mJy sensitivity. Using the non-LTE radiative transfer code RADEX and the forward-modeling tool DiskFit, disk-averaged CS column densities and upper limits for the other species were derived. Results. Only CS was detected with a derived column density of $sim 2-6 times 10^{12}$ cm$^{-2}$. We report a first tentative detection of SO$_2$ in DM Tau. The upper limits range between $sim 10^{11}$ and $10^{14}$ cm$^{-2}$ for the other S-bearing species. The best-fit chemical model matching these values requires a gas-phase C/O ratio of > 1 at $r sim 50-100$ au. With chemical modeling we demonstrate that sulfur-bearing species could be robust tracers of the gas-phase C/O ratio, surface reaction rates, grain size and UV intensities. Conclusions. The lack of detections of a variety of sulfur-bearing molecules in DM Tau other than CS implies a dearth of reactive sulfur in the gas phase, either through efficient freeze-out or because most of the elemental sulfur is in other large species, as found in comets. The inferred high CS/SO and CS/SO$_2$ ratios require a non-solar C/O gas-phase ratio of > 1, consistent with the recent observations of hydrocarbon rings in DM Tau. The stronger depletion of oxygen-bearing S-species compared to CS is likely linked to the low observed abundances of gaseous water in DM Tau and points to a removal mechanism of oxygen from the gas.
(abridged) We used the IRAM 30-m to perform a sensitive wideband survey of 30 protoplanetary disks in the Taurus Auriga region. We simultaneously observed HCO$^+$(3-2), HCN(3-2), C$_2$H(3-2), CS(5-4), and two transitions of SO. We combine the results with a previous survey which observed $^{13}$CO (2-1), CN(2-1), two o-H$_2$CO lines and one of SO. We use available interferometric data to derive excitation temperatures of CN and C$_2$H in several sources. We determine characteristic sizes of the gas disks and column densities of all molecules using a parametric power-law disk model. Our study is mostly sensitive to molecules at 200-400 au from the stars. We compare the derived column densities to the predictions of an extensive gas-grain chemical disk model, under conditions representative of T Tauri disks. This survey provides 20 new detections of HCO$^+$ in disks, 18 in HCN, 11 in C$_2$H, 8 in CS and 4 in SO. HCO$^+$ is detected in almost all sources, and its J=3-2 line is essentially optically thick, providing good estimates of the disk radii. The other transitions are (at least partially) optically thin. Variations of the column density ratios do not correlate with any specific property of the star or disk. Disks around Herbig Ae stars appear less rich in molecules than those around T Tauri stars, although the sample remains small. SO is only found in the (presumably younger) embedded objects, perhaps reflecting an evolution of the S chemistry due to increasing depletion with time. Overall, the molecular column densities, and in particular the CN/HCN and CN/C$_2$H ratios, are well reproduced by gas-grain chemistry in cold disks. This study provides a census of simple molecules in disks of radii $> 200-300$ au. Extending that to smaller disks, or searching for less abundant or more complex molecules requires a much more sensitive facility, i.e. NOEMA and ALMA.
Molecular line emission from protoplanetary disks is a powerful tool to constrain their physical and chemical structure. Nevertheless, only a few molecules have been detected in disks so far. We take advantage of the enhanced capabilities of the IRAM 30m telescope by using the new broad band correlator (FTS) to search for so far undetected molecules in the protoplanetary disks surrounding the TTauri stars DM Tau, GO Tau, LkCa 15 and the Herbig Ae star MWC 480. We report the first detection of HC3N at 5 sigma in the GO Tau and MWC 480 disks with the IRAM 30-m, and in the LkCa 15 disk (5 sigma), using the IRAM array, with derived column densities of the order of 10^{12}cm^{-2}. We also obtain stringent upper limits on CCS (N < 1.5 x 10^{12} cm^{-3}). We discuss the observational results by comparing them to column densities derived from existing chemical disk models (computed using the chemical code Nautilus) and based on previous nitrogen and sulfur-bearing molecule observations. The observed column densities of HC3N are typically two orders of magnitude lower than the existing predictions and appear to be lower in the presence of strong UV flux, suggesting that the molecular chemistry is sensitive to the UV penetration through the disk. The CCS upper limits reinforce our model with low elemental abundance of sulfur derived from other sulfur-bearing molecules (CS, H2S and SO).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا