ﻻ يوجد ملخص باللغة العربية
In this paper, we develop a highly efficient molecular dynamics code fully implemented on graphics processing units for thermal conductivity calculations using the Green-Kubo formula. We compare two different schemes for force evaluation, a previously used thread-scheme where a single thread is used for one particle and each thread calculates the total force for the corresponding particle, and a new block-scheme where a whole block is used for one particle and each thread in the block calculates one or several pair forces between the particle associated with the given block and its neighbor particle(s) associated with the given thread. For both schemes, two different classical potentials, namely, the Lennard-Jones potential and the rigid-ion potential are implemented. While the thread-scheme performs a little better for relatively large systems, the block-scheme performs much better for relatively small systems. The relative performance of the block-scheme over the thread-scheme also increases with the increasing of the cutoff radius. We validate the implementation by calculating lattice thermal conductivities of solid argon and lead telluride.
We present a new method for numerical hydrodynamics which uses a multidimensional generalisation of the Roe solver and operates on an unstructured triangular mesh. The main advantage over traditional methods based on Riemann solvers, which commonly u
We present an algorithm for neighbor search in molecular simulations on graphics processing units (GPUs) based on bounding volume hierarchies (BVHs). The BVH is compressed into a low-precision, quantized representation to increase the BVH traversal s
Gravitational wave Bayesian parameter inference involves repeated comparisons of GW data to generic candidate predictions. Even with algorithmically efficient methods like RIFT or reduced-order quadrature, the time needed to perform these calculation
The investigation of samples with a spatial resolution in the nanometer range relies on the precise and stable positioning of the sample. Due to inherent mechanical instabilities of typical sample stages in optical microscopes, it is usually required
We present a novel implementation of the modal discontinuous Galerkin (DG) method for hyperbolic conservation laws in two dimensions on graphics processing units (GPUs) using NVIDIAs Compute Unified Device Architecture (CUDA). Both flexible and highl