ترغب بنشر مسار تعليمي؟ اضغط هنا

Extremal geometry of a Brownian porous medium

113   0   0.0 ( 0 )
 نشر من قبل Jesse Goodman
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The path W[0,t] of a Brownian motion on a d-dimensional torus T^d run for time t is a random compact subset of T^d. We study the geometric properties of the complement T^d W[0,t] for t large and d >= 3. In particular, we show that the largest regions in this complement have a linear scale phi = [(d log t)/(d-2)kt]^{1/(d-2)}, where k is the capacity of the unit ball. More specifically, we identify the sets E for which T^d W[0,t] contains a translate of phi E, and we count the number of disjoint such translates. Furthermore, we derive large deviation principles for the largest inradius of T^d W[0,t] for t large and the epsilon-cover time of T^d for epsilon small. Our results, which generalise laws of large numbers proved by Dembo, Peres and Rosen, are based on a large deviation principle for the shape of the component with largest capacity in T^d W_rho[0,t], where W_rho[0,t] is the Wiener sausage of radius rho = rho(t), with rho(t) chosen much smaller than phi but not too small. The idea behind this choice is that T^d W[0,t] consists of lakes, whose linear size is of order phi, connected by narrow channels. We also derive large deviation principles for the principal Dirichlet eigenvalue and for the maximal volume of the components of T^d W_rho[0,t] for t large. Our results give a complete picture of the extremal geometry of T^d W[0,t] and of the optimal strategy for W[0,t] to realise the extremes.

قيم البحث

اقرأ أيضاً

Flows through porous media can carry suspended and dissolved materials. These sediments may deposit inside the pore-space and alter its geometry. In turn, the changing pore structure modifies the preferential flow paths, resulting in a strong couplin g between structural modifications and transport characteristics. Here, we compare two different models that lead to channel obstruction as a result of subsequent deposition. The first model randomly obstructs pore-throats across the porous medium, while in the second model the pore-throat with the highest flow rate is always obstructed first. By subsequently closing pores, we find that the breakdown of the permeability follows a power-law scaling, whose exponent depends on the obstruction model. The pressure jumps that occur during the obstruction process also follow a power-law distribution with the same universal scaling exponent as the avalanche size distribution of invasion percolation, independent of the model. This result suggests that the clogging processes and invasion percolation may belong to the same universality class.
131 - Sebastian Hensel 2020
We establish finite time extinction with probability one for weak solutions of the Cauchy-Dirichlet problem for the 1D stochastic porous medium equation with Stratonovich transport noise and compactly supported smooth initial datum. Heuristically, th is is expected to hold because Brownian motion has average spread rate $O(t^frac{1}{2})$ whereas the support of solutions to the deterministic PME grows only with rate $O(t^{frac{1}{m{+}1}})$. The rigorous proof relies on a contraction principle up to time-dependent shift for Wong-Zakai type approximations, the transformation to a deterministic PME with two copies of a Brownian path as the lateral boundary, and techniques from the theory of viscosity solutions.
The paper identifies families of quasi-stationary initial conditions for infinite Brownian particle systems within a large class and provides a construction of the particle systems themselves started from such initial conditions. Examples of particle systems falling into our framework include Browni
We demonstrate how sophisticated graph properties, such as small distances and scale-free degree distributions, arise naturally from a reinforcement mechanism on layered graphs. Every node is assigned an a-priori i.i.d. fitness with max-stable distri bution. The fitness determines the node attractiveness w.r.t. incoming edges as well as the spatial range for outgoing edges. For max-stable fitness distributions, we thus obtain complex spatial network, which we coin extremal linkage network.
We derive the asymptotic winding law of a Brownian particle in the plane subjected to a tangential drift due to a point vortex. For winding around a point, the normalized winding angle converges to an inverse Gamma distribution. For winding around a disk, the angle converges to a distribution given by an elliptic theta function. For winding in an annulus, the winding angle is asymptotically Gaussian with a linear drift term. We validate our results with numerical simulations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا