ﻻ يوجد ملخص باللغة العربية
We report high-resolution (0.07 arcsec) near-infrared polarized intensity images of the circumstellar disk around the star 2MASS J16042165-2130284 obtained with HiCIAO mounted on the Subaru 8.2 m telescope. We present our $H$-band data, which clearly exhibits a resolved, face-on disk with a large inner hole for the first time at infrared wavelengths. We detect the centrosymmetric polarization pattern in the circumstellar material as has been observed in other disks. Elliptical fitting gives the semimajor axis, semiminor axis, and position angle (P.A.) of the disk as 63 AU, 62 AU, and -14 $^{circ}$, respectively. The disk is asymmetric, with one dip located at P.A.s of $sim85^{circ}$. Our observed disk size agrees well with a previous study of dust and CO emission at submillimeter wavelength with Submillimeter Array. Hence, the near-infrared light is interpreted as scattered light reflected from the inner edge of the disk. Our observations also detect an elongated arc (50 AU) extending over the disk inner hole. It emanates at the inner edge of the western side of the disk, extending inward first, then curving to the northeast. We discuss the possibility that the inner hole, the dip, and the arc that we have observed may be related to the existence of unseen bodies within the disk.
The study of dynamical processes in protoplanetary disks is essential to understand planet formation. In this context, transition disks are prime targets because they are at an advanced stage of disk clearing and may harbor direct signatures of disk
The Upper Scorpius OB association is the nearest region of recent massive star formation and thus an important benchmark for investigations concerning stellar evolution and planet formation timescales. We present nine EBs in Upper Scorpius, three of
Determining the mechanisms that drive the evolution of protoplanetary disks is a necessary step to understand how planets form. Here we measured the mass accretion rate for young stellar objects at age >5 Myr, a critical test for the current models o
Flares are known to play an important role for the evolution of the atmospheres of young planets. In order to understand the evolution of planets, it is thus important to study the flare-activity of young stars. This is particularly the case for youn
We present high resolution H-band polarized intensity (PI; FWHM = 0.1: 14 AU) and L-band imaging data (FWHM = 0.11: 15 AU) of the circumstellar disk around the weak-lined T Tauri star PDS 70 in Centaurus at a radial distance of 28 AU (0.2) up to 210