ترغب بنشر مسار تعليمي؟ اضغط هنا

Quark-lepton complementarity and self-complementarity in different schemes

135   0   0.0 ( 0 )
 نشر من قبل Bo-Qiang Ma
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

With the progress of increasingly precise measurements on the neutrino mixing angles, phenomenological relations such as quark-lepton complementarity (QLC) among mixing angles of quarks and leptons and self-complementarity (SC) among lepton mixing angles have been observed. Using the latest global fit results of the quark and lepton mixing angles in the standard Chau-Keung scheme, we calculate the mixing angles and CP-violating phases in the other eight different schemes. We check the dependence of these mixing angles on the CP-violating phases in different phase schemes. The dependence of QLC and SC relations on the CP phase in the other eight schemes is recognized and then analyzed, suggesting that measurements on CP-violating phases of the lepton sector are crucial to the explicit forms of QLC and SC in different schemes.



قيم البحث

اقرأ أيضاً

We reexamine the quark-lepton complementarity (QLC) in nine angle-phase parametrizations with the latest result of a large lepton mixing angle $vartheta_{13}$ from the T2K, MINOS and Double Chooz experiments. We find that there are still two QLC rela tions satisfied in P1, P4 and P6 parametrizations, whereas only one QLC relation holds in P2, P3, P5 and P9 parametrizations separately. We also work out the corresponding reparametrization-invariant forms of the QLC relations and check the resulting expressions with the experimental data. The results can be viewed as a check of the validity of the QLC relations, as well as a new perspective into the issue of seeking for the connection between quarks and leptons.
We conduct a detailed analysis of the phenomenology of two predictive see-saw scenarios leading to Quark-Lepton Complementarity. In both cases we discuss the neutrino mixing observables and their correlations, neutrinoless double beta decay and lepto n flavor violating decays such as mu -> e gamma. We also comment on leptogenesis. The first scenario is disfavored on the level of one to two standard deviations, in particular due to its prediction for U_{e3}. There can be resonant leptogenesis with quasi-degenerate heavy and light neutrinos, which would imply sizable cancellations in neutrinoless double beta decay. The decays mu -> e gamma and tau -> mu gamma are typically observable unless the SUSY masses approach the TeV scale. In the second scenario leptogenesis is impossible. It is however in perfect agreement with all oscillation data. The prediction for mu -> e gamma is in general too large, unless the SUSY masses are in the range of several TeV. In this case tau -> e gamma and tau -> mu gamma are unobservable.
121 - Ya-juan Zheng 2010
The quark-lepton complementarity (QLC) is very suggestive in understanding possible relations between quark and lepton mixing matrices. We explore the QLC relations in all the possible angle-phase parametrizations and point out that they can approxim ately hold in five parametrizations. Furthermore, the vanishing of the smallest mixing angles in the CKM and PMNS matrices can make sure that the QLC relations exactly hold in those five parametrizations. Finally, the sensitivity of the QLC relations to radiative corrections is also discussed.
122 - Xinyi Zhang , Bo-Qiang Ma 2012
With the latest results of a large mixing angle $theta_{13}$ for neutrinos by the T2K, MINOS and Double Chooz experiments, we find that the self-complementarity (SC) relations agree with the data in some angle-phase parametrizations of the lepton mix ing matrix. There are three kinds of self-complementarity relations: (1) $vartheta_i+vartheta_j=vartheta_k=45^circ$; (2) $vartheta_i+vartheta_j=vartheta_k$; (3) $vartheta_i+vartheta_j=45^circ$ (where $i$, $j$, $k$ denote the mixing angles in the angle-phase parametrizations). We present a detailed study on the self-complementarity relations in nine different angle-phase parametrizations, and also examine the explicit expressions in reparametrization-invariant form, as well as their deviations from global fit. These self-complementarity relations may lead to new perspective on the mixing pattern of neutrinos.
We consider the TeV scale left-right symmetric theory which can accommodate low scale seesaw mechanisms consistent with neutrino oscillation data and find new physics contributions to neutrinoless double beta decay. The model facilitates natural type -II seesaw dominance and the presence of extra particles make the Dirac neutrino mass matrix $M_D$ large that leads to large light heavy neutrino mixing. The spontaneous symmetry breaking through doublets, triplets and bidoublet scalars at TeV scale offers rich phenomenology accessible to LHC. From the numerical studies of the new physics contributions to neutrinoless double beta decay we derive a lower limit on absolute scale of lightest neutrino mass and find that normal hierarchy (NH) pattern is favorable taking into account the cosmology and oscillation data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا