ﻻ يوجد ملخص باللغة العربية
Zirconium alloys are used as nuclear fuel cladding material due to their mechanical and corrosion resistant properties together with their favorable cross-section for neutron scattering. At running conditions, however, there will be an increase of hydrogen in the vicinity of the cladding surface at the water side of the fuel. The hydrogen will diffuse into the cladding material and at certain conditions, such as lower temperatures and external load, hydrides will precipitate out in the material and cause well known embrittlement, blistering and other unwanted effects. Using phase-field methods it is now possible to model precipitation build-up in metals, for example as a function of hydrogen concentration, temperature and external load, but the technique relies on input of parameters, such as the formation energy of the hydrides and matrix. To that end, we have computed, using the density functional theory (DFT) code GPAW, the latent heat of fusion as well as solved the crystal structure for three zirconium hydride polymorphs: delta-ZrH1.6, gamma-ZrH, and epsilon-ZrH2.
We study the electronic structures and dielectric functions of the simple hydrides LiH, NaH, MgH2 and AlH3, and the complex hydrides Li3AlH6, Na3AlH6, LiAlH4, NaAlH4 and Mg(AlH4)2, using first principles density functional theory and GW calculations.
The elastic, thermodynamic, and electronic properties of fluorite RuO_2 under high pressure are investigated by plane-wave pseudopotential density functional theory. The optimized lattice parameters, elastic constants, bulk modulus, and shear modulus
The high pressure structural properties of bismuth oxide Bi2SiO5 have been investigated up to 28 GPa using in situ powder synchrotron X-ray diffraction and up to 50 GPa with DFT calculations. The monoclinic structure is found to persist up to about 2
The anharmonic phenomena in Zirconium Hydrides and Deuterides, including {epsilon}-ZrH2, {gamma}-ZrH, and {gamma}-ZrD, have been investigated from aspects of inelastic neutron scattering (INS) and lattice dynamics calculations within the framework of
GaTa$_4$Se$_8$ belongs to the lacunar spinel family. Its crystal structures is still a puzzle though there have been intensive studies on its novel properties, such as the Mott insulator phase and superconductivity under pressure. In this work, we in