ترغب بنشر مسار تعليمي؟ اضغط هنا

High pressure crystal structure and electronic properties of bismuth silicate Bi2SiO5 from synchrotron experiment and first principle calculations

118   0   0.0 ( 0 )
 نشر من قبل Adrien Girard
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The high pressure structural properties of bismuth oxide Bi2SiO5 have been investigated up to 28 GPa using in situ powder synchrotron X-ray diffraction and up to 50 GPa with DFT calculations. The monoclinic structure is found to persist up to about 20 GPa, where a notable change in the compressibility occurs. The DFT data imply that this is due to a second-order phase transition from the ambient condition monoclinic structure with space group Cc to an orthorhombic polymorph with space group Cmcm. This transition involves the straightening of the chains formed by corner-connected SiO4 tetrahedra, that suppresses the ferroelectricity in the high pressure, centrosymmetric phase of Bi2SiO5. The stereo-chemical activity of the Bi3+ lone electron pair is found to decrease with increasing pressure, but it can still be identifed in the calculated electron density difference maps at 50 GPa.



قيم البحث

اقرأ أيضاً

GaTa$_4$Se$_8$ belongs to the lacunar spinel family. Its crystal structures is still a puzzle though there have been intensive studies on its novel properties, such as the Mott insulator phase and superconductivity under pressure. In this work, we in vestigate its phonon spectra through first-principle calculations and proposed it most probably has crystal structure phase transition, which is consistent with several experimental observations. For the prototype lacunar spinel with cubic symmetry of space group $Fbar{4}3m$, its phonon spectra have three soft modes in the whole Brillouin zone, indicating the strong dynamical instability of such crystal structure. In order to find the dynamically stable crystal structure, further calculations indicate two new structures of GaTa$_4$Se$_8$, corresponding to $R3m$ and $Pbar{4}2_{1}m$, verifying that at the ambient pressure, there does exist structure phase transition of GaTa$_4$Se$_8$ from $Fbar{4}3m$ to other structures when the temperature is lowered. We also performed electronic structure calculation for $R3m$ and $Pbar{4}2_{1}m$ structure, showing that $Pbar{4}2_{1}m$ structure GaTa$_4$Se$_8$ is band insulator, and obtained Mott insulator state for $R3m$ structure by DMFT calculation under single-band Hubbard model picture when interaction parameter U is larger than 0.40 eV vs. band width of 0.25 eV. It is reasonable to assume that while lowering the temperature, $Fbar{4}3m$ structure GaTa$_4$Se$_8$ becomes $R3m$ structure GaTa$_4$Se$_8$ first, then $Pbar{4}2_{1}m$ structure GaTa$_4$Se$_8$, because of the symmetry of $Pbar{4}2_{1}m$ is lower than $R3m$ after Jahn-Teller distortion. The structure transition may explain the magnetic susceptibility anomalous at low temperature.
We study the possibility of pressure-induced transitions from a normal semiconductor to a topological insulator (TI) in bismuth tellurohalides using density functional theory and tight-binding method. In BiTeI this transition is realized through the formation of an intermediate phase, a Weyl semimetal, that leads to modification of surface state dispersions. In the topologically trivial phase, the surface states exhibit a Bychkov-Rashba type dispersion. The Weyl semimetal phase exists in a narrow pressure interval of 0.2 GPa. After the Weyl semimetal--TI transition occurs, the surface electronic structure is characterized by gapless states with linear dispersion. The peculiarities of the surface states modification under pressure depend on the band-bending effect. We have also calculated the frequencies of Raman active modes for BiTeI in the proposed high-pressure crystal phases in order to compare them with available experimental data. Unlike BiTeI, in BiTeBr and BiTeCl the topological phase transition does not occur. In BiTeBr, the crystal structure changes with pressure but the phase remains a trivial one. However, the transition appears to be possible if the low-pressure crystal structure is retained. In BiTeCl under pressure, the topological phase does not appear up to 18 GPa due to a relatively large band gap width in this compound.
305 - Z.J. Yang , A.M. Guo , Y.D. Guo 2012
The elastic, thermodynamic, and electronic properties of fluorite RuO_2 under high pressure are investigated by plane-wave pseudopotential density functional theory. The optimized lattice parameters, elastic constants, bulk modulus, and shear modulus are consistent with other theoretical values. The phase transition from modified fluorite-type to fluorite is 88 GPa (by localized density approximation, LDA) or 115.5 GPa (by generalized gradient approximation, GGA). The Youngs modulus and Lames coefficients are also studied under high pressure. The structure turned out to be stable for the pressure up to 120 GPa by calculating elastic constants. In addition, the thermodynamic properties, including the Debye temperature, heat capacity, thermal expansion coefficient, Gruneisen parameter, and Poissons ratio, are investigated. A small band gap is found in the electronic structure of fluorite RuO_2 and the bandwidth increases with the pressure. Also, the present mechanical and electronic properties demonstrate that the bonding nature is a combination of covalent, ionic, and metallic contributions.
498 - Haiming Li , Jiong Li , Shuo Zhang 2008
Based on the first-principles calculations, we have investigated the geometry, binding properties, density of states and band structures of the novel superconductor LaFe1-xCoxAsO and its parent compounds with the ZrCuSiAs structure. We demonstrate th at La-O bond and TM-As (TM=Fe or Co) bond are both strongly covalent, while the LaO and TMAs layers have an almost ionic interaction through the Bader charge analysis. Partial substitution of iron with cobalt modify the Fermi level from a steep edge to a flat slope, which explains why in this system Co doping suppresses the spin density wave (SDW) transition.
We present results of electronic band structure, Fermi surface and electron transport properties calculations in orthorhombic $n$- and $p$-type SnSe, applying Korringa-Kohn-Rostoker method and Boltzmann transport approach. The analysis accounted for temperature effect on crystallographic parameters in $Pnma$ structure as well as the phase transition to $CmCm$ structure at $T_csim 807 $K. Remarkable modifications of conduction and valence bands were notified upon varying crystallographic parameters within the structure before $T_c$, while the phase transition mostly leads to jump in the band gap value. The diagonal components of kinetic parameter tensors (velocity, effective mass) and resulting transport quantity tensors (electrical conductivity $sigma$, thermopower $S$ and power factor PF) were computed in wide range of temperature ($15-900 $K) and, hole ($p-$type) and electron ($n-$type) concentration ($10^{17}-10^{21}$ cm$^{-3}$). SnSe is shown to have strong anisotropy of the electron transport properties for both types of charge conductivity, as expected for the layered structure. In general, $p$-type effective masses are larger than $n$-type ones. Interestingly, $p$-type SnSe has strongly non-parabolic dispersion relations, with the pudding-mold-like shape of the highest valence band. The analysis of $sigma$, $S$ and PF tensors indicates, that the inter-layer electron transport is beneficial for thermoelectric performance in $n$-type SnSe, while this direction is blocked in $p$-type SnSe, where in-plane transport is preferred. Our results predict, that $n$-type SnSe is potentially even better thermoelectric material than $p$-type one. Theoretical results are compared with single crystal $p$-SnSe measurements, and good agreement is found.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا