ترغب بنشر مسار تعليمي؟ اضغط هنا

Giant stellar arcs in the Large Magellanic Cloud: a possible link with past activity of the Milky Way nucleus

51   0   0.0 ( 0 )
 نشر من قبل Yuri Efremov N.
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Yuri N. Efremov




اسأل ChatGPT حول البحث

The origin of the giant stellar arcs in the LMC remains a controversial issue, discussed since 1966. No other stellar arc is so perfect a segment of a circle, moreover, there is another similar arc nearby. Many hypotheses were advanced to explain these arcs, and all but one of these were disproved. It was proposed in 2004 that origin of these arcs was due to the bow shock from the jet, which is intermittently fired by the Milky Way nucleus and during the last episode of its activity the jet was pointed to the LMC. Quite recently evidence for such a jet has really appeared. We suppose it was once energetic enough to trigger star formation in the LMC, and if the jet opening angle was about 2{deg}, it could push out HI gas from the region of about 2 kpc in size, forming a cavity LMC4, but also squeezed two dense clouds, which occurred in the same area, causing the formation of stars along their surfaces facing the core of the MW. In result, spherical segments of the stellar shells might arise, visible now as the arcs of Quadrant and Sextant, the apices of which point to the center of the MW. This orientation of both arcs can be the key to unlocking their origin. Here we give data which confirm the above hypothesis, amongst which are radial velocities of stars inside and outside the larger one of the LMC arcs. The probability is low that a jet from an AGN points to a nearby galaxy and triggers star formation there, but a few other examples are now known or suspected.



قيم البحث

اقرأ أيضاً

Analysing all Galaxy and Mass Assembly (GAMA) galaxies within a factor two (+/- 0.3 dex) of the stellar mass of the Milky Way (MW), there is a 11.9% chance that one of these galaxies will have a close companion (within a projected separation of 70 kp c and radial separation of 400 km/s) that is at least as massive as the Large Magellanic Cloud (LMC). Two close companions at least as massive as the Small Magellanic Cloud (SMC) are rare at the 3.4% level. Two full analogues to the MW- LMC-SMC system were found in GAMA (all galaxies late-type and star forming), suggesting such a combination of close together, late-type, star-forming galaxies is rare: only 0.4% of MW mass galaxies (in the range where we could observe both the LMC and SMC) have such a system. In summary, the MW-LMC-SMC system is a 2.7? event (when recast into Gaussian statistics). Using cross-correlation comparisons we find that there is a preference for SMC- LMC binary pair analogues to be located within 2 Mpc of a range of different lumi- nosity groups. There is a particular preference is for such binaries to be located near LG luminosity systems. When these groups are subdivided into small magnitude gap and large magnitude gap subsets, the binaries prefer to be spatially associated with the small magnitude gap systems. These systems will be dynamically less evolved, but still offer the same amount of gravitational dark matter. This suggests that binaries such as the SMC-LMC might be transient systems, usually destroyed during vigorous merger events. Details of a particularly striking analogue to the MW-SMC-LMC and M31 complex are included.
We predict and compare the distributions and properties of hyper-velocity stars (HVSs) ejected from the centres of the Milky Way (MW) and the Large Magellanic Cloud (LMC). In our model, HVSs are ejected at a constant rate -- equal in both galaxies -- via the Hills mechanism and are propagated in a combined potential, where the LMC orbits the MW on its first infall. By selecting $m>2, mathrm{M_odot}$ HVSs well-separated from the Magellanic Clouds and Galactic midplane, we identify mock HVSs which would stand out from ordinary stars in the stellar halo in future data releases from the Gaia satellite and the Vera C. Rubin Observatorys Legacy Survey of Space and Time (LSST). We find that in these deep surveys, LMC HVSs will outnumber MW ones by a factor $sim 2.5$, as HVSs can more easily escape from the shallower potential of the LMC. At an assumed HVS ejection rate of $10^{-4} , mathrm{yr^{-1}}$, HVSs detectable in the final Gaia data release and LSST from the LMC (MW) will number $125_{-12}^{+11}$ ($50_{-8}^{+7}$) and $140_{-11}^{+10}$ ($42_{-7}^{+6}$), respectively. The MW and LMC HVS populations show different kinematics and spatial distributions. While LMC HVSs have more modest total velocities and larger Galactocentric distances clustered around those of the LMC itself, HVSs from the MW show broader distributions, including a prominent high-velocity tail above $500 , mathrm{km s^{-1}}$ that contains at least half of the stars. These predictions are robust against reasonable variation of the Galactic potential and of the LMC central black hole mass.
Studies of young stellar objects (YSOs) in the Galaxy have found that a significant fraction exhibit photometric variability. However, no systematic investigation has been conducted on the variability of extragalactic YSOs. Here we present the first variability study of massive YSOs in a $sim 1.5,mathrm{deg^2}$ region of the Large Magellanic Cloud (LMC). The aim is to investigate whether the different environmental conditions in the metal-poor LMC ($sim$ 0.4-0.5 Z_sun) have an impact on the variability characteristics. Multi-epoch near-infrared (NIR) photometry was obtained from the VISTA Survey of the Magellanic Clouds (VMC) and our own monitoring campaign using the VISTA telescope. By applying a reduced $chi^2$-analysis, stellar variability was identified. We found 3062 candidate variable stars from a population of 362 425 stars detected. Based on several Spitzer studies, we compiled a sample of high-reliability massive YSOs: a total of 173 massive YSOs have NIR counterparts ($K_{mathrm{s}}sim 18.5,$mag) in the VMC catalogue, of which 39 display significant ($>3sigma$) variability. They have been classified as eruptive, fader, dipper, short-term variable and long-period variable YSOs based mostly on the appearance of their $K_{mathrm{s}}$ band light curves. The majority of YSOs are aperiodic, only five YSOs exhibit periodic lightcurves. The observed amplitudes are comparable or smaller than those for Galactic YSOs (only two Magellanic YSOs exhibit $Delta K_{mathrm{s}}>1,$mag), not what would have been expected from the typically larger mass accretion rates observed in the Magellanic Clouds.
461 - J.M. Oliveira 2009
We present spectroscopic observations of a sample of 15 embedded young stellar objects (YSOs) in the Large Magellanic Cloud (LMC). These observations were obtained with the Spitzer Infrared Spectrograph (IRS) as part of the SAGE-Spec Legacy program. We analyze the two prominent ice bands in the IRS spectral range: the bending mode of CO_2 ice at 15.2 micron and the ice band between 5 and 7 micron that includes contributions from the bending mode of water ice at 6 micron amongst other ice species. The 5-7 micron band is difficult to identify in our LMC sample due to the conspicuous presence of PAH emission superimposed onto the ice spectra. We identify water ice in the spectra of two sources; the spectrum of one of those sources also exhibits the 6.8 micron ice feature attributed to ammonium and methanol. We model the CO_2 band in detail, using the combination of laboratory ice profiles available in the literature. We find that a significant fraction (> 50%) of CO_2 ice is locked in a water-rich component, consistent with what is observed for Galactic sources. The majority of the sources in the LMC also require a pure-CO_2 contribution to the ice profile, evidence of thermal processing. There is a suggestion that CO_2 production might be enhanced in the LMC, but the size of the available sample precludes firmer conclusions. We place our results in the context of the star formation environment in the LMC.
The bar of the Large Magellanic Cloud (LMC) is one of the prominent, but controversial feature regarding its location with respect to the disk of the LMC. In order to study the relative location of the bar with respect to the disk, we present the hig h resolution map of the structure across the LMC. We used the reddening corrected mean magnitudes ($I_0$) of red clump (RC) stars from the OGLE III catalogue to map the relative variation in distance (vertical structure) or variation in RC population across the LMC. The bar does not appear as an identifiable vertical feature in the map, as there is no difference in $I_0$ values between the bar and the disk regions. We conclude that the LMC bar is very much part of the disk, located in the plane of the disk (within 0.02 mag) and it is not a separate component. We identify warps or variation in RC population with increase in radial distance. %The structure map also suggests a %warp or a different RC population in the eastern part of the LMC disk.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا