ﻻ يوجد ملخص باللغة العربية
The bar of the Large Magellanic Cloud (LMC) is one of the prominent, but controversial feature regarding its location with respect to the disk of the LMC. In order to study the relative location of the bar with respect to the disk, we present the high resolution map of the structure across the LMC. We used the reddening corrected mean magnitudes ($I_0$) of red clump (RC) stars from the OGLE III catalogue to map the relative variation in distance (vertical structure) or variation in RC population across the LMC. The bar does not appear as an identifiable vertical feature in the map, as there is no difference in $I_0$ values between the bar and the disk regions. We conclude that the LMC bar is very much part of the disk, located in the plane of the disk (within 0.02 mag) and it is not a separate component. We identify warps or variation in RC population with increase in radial distance. %The structure map also suggests a %warp or a different RC population in the eastern part of the LMC disk.
We present a near- to mid-infrared point source catalog of 5 photometric bands at 3.2, 7, 11, 15 and 24 um for a 10 deg2 area of the Large Magellanic Cloud (LMC) obtained with the Infrared Camera (IRC) onboard the AKARI satellite. To cover the survey
The binary fraction of unevolved massive stars is thought to be 70-100% but there are few observational constraints on the binary fraction of the evolved version of a subset of these stars, the red supergiants (RSGs). Here we identify a complete samp
The Magellanic Cloud System (MCS) interacts via tidal and drag forces with the Milky Way galaxy. Using the Parkes Galactic All-Sky Survey (GASS) of atomic hydrogen we explore the role of drag on the evolution of the so-called Leading Arm (LA). We pre
The HST/ACS colour-magnitude diagrams (CMD) of the populous LMC star cluster NGC1751 present both a broad main sequence turn-off and a dual clump of red giants. We show that the latter feature is real and associate it to the first appearance of elect
We present cosmological hydrodynamical simulations of the formation of dwarf galaxies in a representative sample of haloes extracted from the Millennium-II Simulation. Our six haloes have a z = 0 mass of ~10^10 solar masses and show different mass as