ترغب بنشر مسار تعليمي؟ اضغط هنا

Optimal preconditioning for image deblurring with Anti-Reflective boundary conditions

85   0   0.0 ( 0 )
 نشر من قبل Cristina Tablino Possio
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Inspired by the theoretical results on optimal preconditioning stated by Ng, R.Chan, and Tang in the framework of Reflective boundary conditions (BCs), in this paper we present analogous results for Anti-Reflective BCs, where an additional technical difficulty is represented by the non orthogonal character of the Anti-Reflective transform and indeed the technique of Ng, R.Chan, and Tang can not be used. Nevertheless, in both cases, the optimal preconditioner is the blurring matrix associated to the symmetrized Point Spread Function (PSF). The geometrical idea on which our proof is based is very simple and general, so it may be useful in the future to prove theoretical results for new proposed boundary conditions. Computational results show that the preconditioning strategy is effective and it is able to give rise to a meaningful acceleration both for slightly and highly non-symmetric PSFs.



قيم البحث

اقرأ أيضاً

The paper analyzes and compares some spectral filtering methods as truncated singular/eigen-value decompositions and Tikhonov/Re-blurring regularizations in the case of the recently proposed Reflective [M.K. Ng, R.H. Chan, and W.C. Tang, A fast algor ithm for deblurring models with Neumann boundary conditions, SIAM J. Sci. Comput., 21 (1999), no. 3, pp.851-866] and Anti-Reflective [S. Serra Capizzano, A note on anti-reflective boundary conditions and fast deblurring models, SIAM J. Sci. Comput., 25-3 (2003), pp. 1307-1325] boundary conditions. We give numerical evidence to the fact that spectral decompositions (SDs) provide a good image restoration quality and this is true in particular for the Anti-Reflective SD, despite the loss of orthogonality in the associated transform. The related computational cost is comparable with previously known spectral decompositions, and results substantially lower than the singular value decomposition. The model extension to the cross-channel blurring phenomenon of color images is also considered and the related spectral filtering methods are suitably adapted.
A 4D-Var data assimilation technique is applied to a ORCA-2 configuration of the NEMO in order to identify the optimal parametrization of the boundary conditions on the lateral boundaries as well as on the bottom and on the surface of the ocean. The influence of the boundary conditions on the solution is analyzed as in the assimilation window and beyond the window. It is shown that optimal conditions for vertical operators allows to get stronger and finer jet streams (Gulf Stream, Kuroshio) in the solution. Analyzing the reasons of the jets reinforcement, we see that the major impact of the data assimilation is made on the parametrization of the bottom boundary conditions for lateral velocities u and v. Automatic generation of the tangent and adjoint codes is also discussed. Tapenade software is shown to be able to produce the adjoint code that can be used after a memory usage optimization.
In recent work it has been established that deep neural networks are capable of approximating solutions to a large class of parabolic partial differential equations without incurring the curse of dimension. However, all this work has been restricted to problems formulated on the whole Euclidean domain. On the other hand, most problems in engineering and the sciences are formulated on finite domains and subjected to boundary conditions. The present paper considers an important such model problem, namely the Poisson equation on a domain $Dsubset mathbb{R}^d$ subject to Dirichlet boundary conditions. It is shown that deep neural networks are capable of representing solutions of that problem without incurring the curse of dimension. The proofs are based on a probabilistic representation of the solution to the Poisson equation as well as a suitable sampling method.
The potential of industrial applications for microalgae has motivated their recent fast development. Their growth dynamics depends on different factors that must be optimized. Since they get their energy from photosynthesis, light is a key factor tha t strongly influences their productivity. Light is absorbed and scattered in the liquid medium, and irradiance exponentially decreases towards the darkest part of the photobioreactor at a rate nonlinearly depending on the biomass concentration. Maximizing productivity is then a tricky problem, especially when the growth rate is inhibited by an excess of light. Productivity optimization turns out to be highly dependent on how light is distributed along the reactor, and is therefore related to the extinction rate and the background turbidity. The concept of optical depth productivity is introduced for systems where background turbidity must be accounted for and a global optimum maximizing productivity is proposed, extending the concept of the compensation condition. This optimal condition consists in compensating the algal growth rate at the bottom of the reactor by the respiration. This condition can drive the optimization of the surface biomass productivity depending on the minimum reachable depth. We develop a nonlinear controller and prove the global asymptotic stability of the biomass concentration towards the desired optimal value.
This paper is concerned with a novel deep learning method for variational problems with essential boundary conditions. To this end, we first reformulate the original problem into a minimax problem corresponding to a feasible augmented Lagrangian, whi ch can be solved by the augmented Lagrangian method in an infinite dimensional setting. Based on this, by expressing the primal and dual variables with two individual deep neural network functions, we present an augmented Lagrangian deep learning method for which the parameters are trained by the stochastic optimization method together with a projection technique. Compared to the traditional penalty method, the new method admits two main advantages: i) the choice of the penalty parameter is flexible and robust, and ii) the numerical solution is more accurate in the same magnitude of computational cost. As typical applications, we apply the new approach to solve elliptic problems and (nonlinear) eigenvalue problems with essential boundary conditions, and numerical experiments are presented to show the effectiveness of the new method.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا