ترغب بنشر مسار تعليمي؟ اضغط هنا

An augmented Lagrangian deep learning method for variational problems with essential boundary conditions

170   0   0.0 ( 0 )
 نشر من قبل Tao Zhou
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper is concerned with a novel deep learning method for variational problems with essential boundary conditions. To this end, we first reformulate the original problem into a minimax problem corresponding to a feasible augmented Lagrangian, which can be solved by the augmented Lagrangian method in an infinite dimensional setting. Based on this, by expressing the primal and dual variables with two individual deep neural network functions, we present an augmented Lagrangian deep learning method for which the parameters are trained by the stochastic optimization method together with a projection technique. Compared to the traditional penalty method, the new method admits two main advantages: i) the choice of the penalty parameter is flexible and robust, and ii) the numerical solution is more accurate in the same magnitude of computational cost. As typical applications, we apply the new approach to solve elliptic problems and (nonlinear) eigenvalue problems with essential boundary conditions, and numerical experiments are presented to show the effectiveness of the new method.



قيم البحث

اقرأ أيضاً

180 - Yulei Liao , Pingbing Ming 2019
We propose a new method to deal with the essential boundary conditions encountered in the deep learning-based numerical solvers for partial differential equations. The trial functions representing by deep neural networks are non-interpolatory, which makes the enforcement of the essential boundary conditions a nontrivial matter. Our method resorts to Nitsches variational formulation to deal with this difficulty, which is consistent, and does not require significant extra computational costs. We prove the error estimate in the energy norm and illustrate the method on several representative problems posed in at most 100 dimension.
This paper focuses on proposing a deep learning initialized iterative method (Int-Deep) for low-dimensional nonlinear partial differential equations (PDEs). The corresponding framework consists of two phases. In the first phase, an expectation minimi zation problem formulated from a given nonlinear PDE is approximately resolved with mesh-free deep neural networks to parametrize the solution space. In the second phase, a solution ansatz of the finite element method to solve the given PDE is obtained from the approximate solution in the first phase, and the ansatz can serve as a good initial guess such that Newtons method for solving the nonlinear PDE is able to converge to the ground truth solution with high-accuracy quickly. Systematic theoretical analysis is provided to justify the Int-Deep framework for several classes of problems. Numerical results show that the Int-Deep outperforms existing purely deep learning-based methods or traditional iterative methods (e.g., Newtons method and the Picard iteration method).
An interface/boundary-unfitted eXtended hybridizable discontinuous Galerkin (X-HDG) method of arbitrary order is proposed for linear elasticity interface problems on unfitted meshes with respect to the interface and domain boundary. The method uses p iecewise polynomials of degrees $k (>= 1)$ and $k-1$ respectively for the displacement and stress approximations in the interior of elements inside the subdomains separated by the interface, and piecewise polynomials of degree $k$ for the numerical traces of the displacement on the inter-element boundaries inside the subdomains and on the interface/boundary of the domain. Optimal error estimates in $L^2$-norm for the stress and displacement are derived. Finally, numerical experiments confirm the theoretical results and show that the method also applies to the case of crack-tip domain.
126 - Jianchao Bai 2021
Motivated by the recent work [He-Yuan, Balanced Augmented Lagrangian Method for Convex Programming, arXiv: 2108.08554v1, (2021)], a novel Augmented Lagrangian Method (ALM) has been proposed for solving a family of convex optimization problem subject to equality or inequality constraint. This new method is then extended to solve the multi-block separable convex optimization problem, and two related primal-dual hybrid gradient algorithms are also discussed. Preliminary and some new convergence results are established with the aid of variational analysis for both the saddle point of the problem and the first-order optimality conditions of involved subproblems.
Discrete variational methods have shown an excellent performance in numerical simulations of different mechanical systems. In this paper, we introduce an iterative method for discrete variational methods appropriate for boundary value problems. More concretely, we explore a parallelization strategy that leverages the power of multicore CPUs and GPUs (graphics cards). We study this parallel method for first-order and second-order Lagrangians and we illustrate its excellent behavior in some interesting applications, namely Zermelos navigation problem, a fuel-optimal navigation problem, and an interpolation problem.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا