ترغب بنشر مسار تعليمي؟ اضغط هنا

Polynomial phase estimation by phase unwrapping

80   0   0.0 ( 0 )
 نشر من قبل Robert McKilliam
 تاريخ النشر 2012
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Estimating the coefficients of a noisy polynomial phase signal is important in fields including radar, biology and radio communications. One approach attempts to perform polynomial regression on the phase of the signal. This is complicated by the fact that the phase is wrapped modulo 2pi and must be unwrapped before regression can be performed. In this paper we consider an estimator that performs phase unwrapping in a least squares manner. We describe the asymptotic properties of this estimator, showing that it is strongly consistent and asymptotically normally distributed.

قيم البحث

اقرأ أيضاً

Sign problems in path integrals arise when different field configurations contribute with different signs or phases. Phase unwrapping describes a family of signal processing techniques in which phase differences between elements of a time series are integrated to construct non-compact unwrapped phase differences. By combining phase unwrapping with a cumulant expansion, path integrals with sign problems arising from phase fluctuations can be systematically approximated as linear combinations of path integrals without sign problems. This work explores phase unwrapping in zero-plus-one-dimensional complex scalar field theory. Results with improved signal-to-noise ratios for the spectrum of scalar field theory can be obtained from unwrapped phases, but the size of cumulant expansion truncation errors is found to be undesirably sensitive to the parameters of the phase unwrapping algorithm employed. It is argued that this numerical sensitivity arises from discretization artifacts that become large when phases fluctuate close to singularities of a complex logarithm in the definition of the unwrapped phase.
Quantum algorithm is an algorithm for solving mathematical problems using quantum systems encoded as information, which is found to outperform classical algorithms in some specific cases. The objective of this study is to develop a quantum algorithm for finding the roots of nth degree polynomials where n is any positive integer. In classical algorithm, the resources required for solving this problem increase drastically when n increases and it would be impossible to practically solve the problem when n is large. It was found that any polynomial can be rearranged into a corresponding companion matrix, whose eigenvalues are roots of the polynomial. This leads to a possibility to perform a quantum algorithm where the number of computational resources increase as a polynomial of n. In this study, we construct a quantum circuit representing the companion matrix and use eigenvalue estimation technique to find roots of polynomial.
In this work, a quaternion-valued model is proposed in lieu of the Clarkes alpha, beta transformation to convert three-phase quantities to a hypercomplex single-phase signal. The concatenated signal can be used for harmonic distortion detection in th ree-phase power systems. In particular, the proposed model maps all the harmonic frequencies into frequencies in the quaternion domain, while the Clarkes transformation-based methods will fail to detect the zero sequence voltages. Based on the quaternion-valued model, the Fourier transform, the minimum variance distortionless response (MVDR) algorithm and the multiple signal classification (MUSIC) algorithm are presented as examples to detect harmonic distortion. Simulations are provided to demonstrate the potentials of this new modeling method.
This paper focuses on the quantum amplitude estimation algorithm, which is a core subroutine in quantum computation for various applications. The conventional approach for amplitude estimation is to use the phase estimation algorithm, which consists of many controlled amplification operations followed by a quantum Fourier transform. However, the whole procedure is hard to implement with current and near-term quantum computers. In this paper, we propose a quantum amplitude estimation algorithm without the use of expensive controlled operations; the key idea is to utilize the maximum likelihood estimation based on the combined measurement data produced from quantum circuits with different numbers of amplitude amplification operations. Numerical simulations we conducted demonstrate that our algorithm asymptotically achieves nearly the optimal quantum speedup with a reasonable circuit length.
By using a systematic optimization approach we determine quantum states of light with definite photon number leading to the best possible precision in optical two mode interferometry. Our treatment takes into account the experimentally relevant situa tion of photon losses. Our results thus reveal the benchmark for precision in optical interferometry. Although this boundary is generally worse than the Heisenberg limit, we show that the obtained precision beats the standard quantum limit thus leading to a significant improvement compared to classical interferometers. We furthermore discuss alternative states and strategies to the optimized states which are easier to generate at the cost of only slightly lower precision.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا