ترغب بنشر مسار تعليمي؟ اضغط هنا

Measurements of the Correlation between Reconstructed Jets and the Reaction Plane in STAR at RHIC

56   0   0.0 ( 0 )
 نشر من قبل Alice Ohlson
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English
 تأليف Alice Ohlson




اسأل ChatGPT حول البحث

The relationship between jet properties and the underlying geometry of the medium produced in heavy ion collisions can be explored through a measurement of the correlation between the axes of reconstructed jets and the reaction plane, defined as jet v2. Such a measurement provides information on the pathlength dependence of medium-induced parton energy loss and may also be used to assess biases in jet-finding methods. We present first measurements of jet v2 in sqrt(sNN) = 200 GeV Au+Au collisions in the STAR experiment at RHIC. In order to reduce the artificial jet - event plane bias, which results from jet fragments being included in the event plane calculation, detectors at forward pseudorapidity are used to determine the event plane when measuring the v2 of reconstructed jets at mid-rapidity. These measurements demonstrate a non-zero jet v2, which is indicative of pathlength-dependent parton energy loss.

قيم البحث

اقرأ أيضاً

Flow harmonics ($v_n$) in the Fourier expansion of the azimuthal distribution of particles are widely used to quantify the anisotropy in particle emission in high-energy heavy-ion collisions. The symmetric cumulants, $SC(m,n)$, are used to measure th e correlations between different orders of flow harmonics. These correlations are used to constrain the initial conditions and the transport properties of the medium in theoretical models. In this Letter, we present the first measurements of the four-particle symmetric cumulants in Au+Au collisions at $sqrt{s_{NN}}$ = 39 and 200 GeV from data collected by the STAR experiment at RHIC. We observe that $v_{2}$ and $v_{3}$ are anti-correlated in all centrality intervals with similar correlation strengths from 39 GeV Au+Au to 2.76 TeV Pb+Pb (measured by the ALICE experiment). The $v_{2}$-$v_{4}$ correlation seems to be stronger at 39 GeV than at higher collision energies. The initial-stage anti-correlations between second and third order eccentricities are sufficient to describe the measured correlations between $v_{2}$ and $v_{3}$. The best description of $v_{2}$-$v_{4}$ correlations at $sqrt{s_{NN}}$ = 200 GeV is obtained with inclusion of the systems nonlinear response to initial eccentricities accompanied by the viscous effect with $eta/s$ $>$ 0.08. Theoretical calculations using different initial conditions, equations of state and viscous coefficients need to be further explored to extract $eta/s$ of the medium created at RHIC.
A plastic scintillator paddle detector with embedded fiber light guides and photomultiplier tube readout, referred to as the Reaction Plane Detector (RXNP), was designed and installed in the PHENIX experiment prior to the 2007 run of the Relativistic Heavy Ion Collider (RHIC). The RXNPs design is optimized to accurately measure the reaction plane (RP) angle of heavy-ion collisions, where, for mid-central $sqrt{s_{NN}}$ = 200 GeV Au+Au collisions, it achieved a $2^{nd}$ harmonic RP resolution of $sim$0.75, which is a factor of $sim$2 greater than PHENIXs previous capabilities. This improvement was accomplished by locating the RXNP in the central region of the PHENIX experiment, where, due to its large coverage in pseudorapidity ($1.0<|eta|<2.8$) and $phi$ (2$pi$), it is exposed to the high particle multiplicities needed for an accurate RP measurement. To enhance the observed signal, a 2-cm Pb converter is located between the nominal collision region and the scintillator paddles, allowing neutral particles produced in the heavy-ion collisions to contribute to the signal through conversion electrons. This paper discusses the design, operation and performance of the RXNP during the 2007 RHIC run.
The production of $W$ bosons in polarized $p+p$ collisions at RHIC provides an excellent tool to probe the protons sea quark distributions. At leading order $W^{-(+)}$ bosons are produced in $bar{u}+d,(bar{d}+u)$ collisions, and parity-violating sing le-spin asymmetries measured in longitudinally polarized $p+p$ collisions give access to the flavor-separated light quark and antiquark helicity distributions. In this proceedings we report preliminary results for the single-spin asymmetry, $A_L$ from data collected in 2012 by the STAR experiment at RHIC with an integrated luminosity of 72 pb$^{-1}$ at $sqrt{s}=510$ GeV and an average beam polarization of 56%.
53 - Jiaxu Zuo 2007
We measure the relative abundances of strange mesons, baryons, and anti-baryons correlated with high-$p_T$ trigger particles in $^{197}$Au + $^{197}$Au collisions at $sqrt{s_{NN}}$ = 200 GeV. Particle yields and ratios are extracted on the near-side and away-side of the trigger particle. The associate-particle ratios are studied as a function of the angle relative to the trigger particle azimuth $Deltaphi$. Such studies should help elucidate the origin of the previously observed correlations and their strong modifications in Au+Au collisions relative to p+p collisions. We discuss how these measurements might be related to several scenarios for interactions of fast partons with the medium in Au+Au collision.
126 - Shusu Shi 2016
We present the recent results of strangeness production at the mid-rapidity in Au + Au collisions at RHIC, from $sqrt{s_{rm NN}}$ = 7.7 to 200 GeV. The $v_2$ of multi-strange baryon $Omega$ and $phi$ mesons are similar to that of pions and protons in the intermediate $p_T$ range (2 - 5 GeV/$c$) in $sqrt{s_{rm NN}}$ = 200 GeV Au + Au collisions, indicating that the major part of collective flow has been built up at partonic stage. The breaking of mass ordering between $phi$ mesons and protons in the low $p_T$ range ($<$ 1 GeV/$c$) is consistent with a picture that $phi$ mesons are less sensitive to later hadronic interaction. The nuclear modification factor $R_{rm CP}$ and baryon to meson ratio change dramatically when the collision energy is lower than 19.6 GeV. It suggests a possible change of medium property of the system compared to those from high energies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا