ترغب بنشر مسار تعليمي؟ اضغط هنا

Towards the Bose symmetry violation issue

58   0   0.0 ( 0 )
 نشر من قبل Ilya Gorbunov N
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English
 تأليف G. A. Kozlov




اسأل ChatGPT حول البحث

We study the Bose symmetry violation through the decays of heavy vector bosons at high energies. In particular, the decay of a Z-boson into two photons where one of the photons is the vector unparticle in the scale invariant sector is considered as a sample. We find out that the Bose symmetry might be violated in the nearly conformal sector at high energy frontier. This may be useful in phenomenological application to the CERN LHC experiments for new physics searches.

قيم البحث

اقرأ أيضاً

132 - S.N. Gninenko , A.Yu. Ignatiev , 2011
The question if the Bose statistics is broken at the TeV scale is discussed. The decay of a new heavy spin 1 gauge boson Z into two photons, Z-> 2 gamma, is forbidden by the Bose statistics among other general principles of quantum field theory (Land au-Yang theorem). We point out that the search for this decay can be effectively used to probe the Bose symmetry violation at the CERN LHC.
We investigate precision observables sensitive to custodial symmetric/violating UV physics beyond the Standard Model. We use the SMEFT framework which in general includes non-oblique corrections that requires a generalization of the Peskin-Takeuchi $ T$ parameter to unambiguously detect custodial symmetry/violation. We take a first step towards constructing a SMEFT reparameterization-invariant replacement, that we call $mathscr{T}$, valid at least for tree-level custodial violating contributions. We utilize a new custodial basis of $ u$SMEFT (SMEFT augmented by right-handed neutrinos) which explicitly identifies the global $SU(2)_R$ symmetries of the Higgs and fermion sectors, that in turn permits easy identification of higher-dimensional operators that are custodial preserving or violating. We carefully consider equation-of-motion redundancies that cause custodial symmetric operators in one basis to be equivalent to a set of custodial symmetric and/or violating operators in another basis. Utilizing known results about tree/loop operator generation, we demonstrate that the basis-dependent appearance of custodial-violating operators does not invalidate our $mathscr{T}$ parameter at tree-level. We illustrate our results with several UV theory examples, demonstrating that $mathscr{T}$ faithfully identifies custodial symmetry violation, while $T$ can fail.
We present a new and sensitive method to observe direct CP violation in $D$ mesons using Bose symmetry and Dalitz plot. We apply the method to processes such as $B to D^0bar{D}^0 P$, where $P$ is either a $K$ or a $pi$. By choosing to reconstruct $D$ mesons only through their decays into CP eigenstates, we show that any asymmetry in the Dalitz plot can arise only through direct CP violation. We further show how CP violation parameters can be determined. Since the approach involves only Bose symmetry, the method is applicable to any multi-body process that involves $D^0bar{D}^0$ in the final state. We briefly discuss how $Bto D^* bar{D}^* P$ can also be used in a similar way.
111 - J. Alexandre 2013
We show how a mass mixing matrix can be generated dynamically, for two massless fermion flavours coupled to a Lorentz invariance violating (LIV) gauge field. The LIV features play the role of a regulator for the gap equations, and the non-analytic de pendence of the dynamical masses, as functions of the gauge coupling, allows to consider the limit where the LIV gauge field eventually decouples from the fermions. Lorentz invariance is then recovered, to describe the oscillation between two free fermion flavours, and we check that the finite dynamical masses are the only effects of the original LIV theory.
We study the minimal seesaw model, where two right-handed Majorana neutrinos are introduced, focusing on the CP violating phase. In addition, we take the trimaximal mixing pattern for the neutrino flavor where the charged lepton mass matrix is diagon al. Thanks to this symmetric framework, the $3times 2$ Dirac neutrino mass matrix is given in terms of a few parameters. Numerical studies reveal that the observation of the CP violating phase can determine the flavor structure of the Dirac neutrino mass matrix in the minimal seesaw model. In particular, new minimal Dirac neutrino mass matrices are proposed in the case of $rm TM_1$, which is derived by the additional 2-3 family mixing to the tri-bimaximal mixing basis in the normal hierarchy of neutrino masses. Our analyses include the Littlest seesaw model by King {it et al.}, which is one of the specific one in our results. Furthermore, it is remarked that our $3times 2$ Dirac neutrino mass matrix is reproduced by introducing gauge singlet flavons with the specific alignments of the VEVs. These alignments suggest the residual symmetry of $S_4$ group.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا