ترغب بنشر مسار تعليمي؟ اضغط هنا

Strongly hybridized electronic structure of YbAl2: An angle-resolved photoemission study

149   0   0.0 ( 0 )
 نشر من قبل Masaharu Matsunami
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the electronic structure of a prototypical valence fluctuation system, YbAl2, using angle-resolved photoemission spectroscopy. The observed band dispersions and Fermi surfaces are well described in terms of band structure calculations based on local density approximation. Strong hybridization between the conduction and 4f bands is identified on the basis of the periodic Anderson model. The evaluated small mass enhancement factor and the high Kondo temperature qualitatively agree with those obtained from thermodynamic measurements. Such findings suggest that the strong hybridization suppresses band renormalization and is responsible for the valence fluctuations in YbAl2.



قيم البحث

اقرأ أيضاً

We studied the electronic band structure of pulsed laser deposition (PLD) grown (111)-oriented SrRuO$_3$ (SRO) thin films using textit{in situ} angle-resolved photoemission spectroscopy (ARPES) technique. We observed previously unreported, light band s with a renormalized quasiparticle effective mass of about 0.8$m_{e}$. The electron-phonon coupling underlying this mass renormalization yields a characteristic kink in the band dispersion. The self-energy analysis using the Einstein model suggests five optical phonon modes covering an energy range 44 to 90 meV contribute to the coupling. Besides, we show that the quasiparticle spectral intensity at the Fermi level is considerably suppressed, and two prominent peaks appear in the valance band spectrum at binding energies of 0.8 eV and 1.4 eV, respectively. We discuss the possible implications of these observations. Overall, our work demonstrates that high-quality thin films of oxides with large spin-orbit coupling can be grown along the polar (111) orientation by the PLD technique, enabling textit{in situ} electronic band structure study. This could allow for characterizing the thickness-dependent evolution of band structure of (111) heterostructures$-$a prerequisite for exploring possible topological quantum states in the bilayer limit.
262 - Bing Shen , Li Yu , Kai Liu 2017
We have carried out high-resolution angle-resolved photoemission measurements on the Cebased heavy fermion compound CePt2In7 that exhibits stronger two-dimensional character than the prototypical heavy fermion system CeCoIn5. Multiple Fermi surface s heets and a complex band structure are clearly resolved. We have also performed detailed band structure calculations on CePt2In7. The good agreement found between our measurements and the calculations suggests that the band renormalization effect is rather weak in CePt2In7. A comparison of the common features of the electronic structure of CePt2In7 and CeCoIn5 indicates that CeCoIn5 shows a much stronger band renormalization effect than CePt2In7. These results provide new information for understanding the heavy fermion behaviors and unconventional superconductivity in Ce-based heavy fermion systems.
We use angle-resolved photoemission spectroscopy to study heavy fermion superconductor Ce2RhIn8. The Fermi surface is rather complicated and consists of several hole and electron pock- ets. We do not observe kz dispersion of Fermi sheets, which is co nsistent with 2D character of the electronic structure. Comparison of the ARPES data and band structure calculations points to a localized picture of f electrons. Our findings pave the way for understanding the transport and thermodynamical properties of this material.
The localized-to-itinerant transition of f electrons lies at the heart of heavy-fermion physics, but has only been directly observed in single-layer Ce-based materials. Here, we report a comprehensive study on the electronic structure and nature of t he Ce 4f electrons in the heavy-fermion superconductor Ce2PdIn8, a typical n=2 CenMmIn3n+2m compound, using high-resolution and 4d-4f resonance photoemission spectroscopies. The electronic structure of this material has been studied over a wide temperature range, and hybridization between f and conduction electrons can be clearly observed to form a Kondo resonance near the Fermi level at low temperatures. The characteristic temperature of the localized-to-itinerant transition is around 120K, which is much higher than its coherence temperature Tcoh~30K.
We studied the electronic structure of the heavy fermion compound Yb(Ru$_{1-x}$Rh$_{x}$)$_2$Ge$_2$ with $x=0$ and nominally $x=0.125$ using ARPES and LDA calculations. We find a valence band structure of Yb corresponding to a non-integer valence clos e to $3+$. The three observed crystal electric field levels with a splitting of 32 and 75 meV confirm the suggested configuration with a quasi-quartet ground state. The experimentally determined band structure of the conduction electrons with predominantly Ru $4d$ character is well reproduced by our calculations. YbRu$_2$Ge$_2$ undergoes a non-magnetic phase transition into a ferroquadrupolar ordered state below 10.2,K and then to an antiferromagnetically ordered state below 6.5,K. A small hole Fermi surface shows nesting features in our calculated band structure and its size determined by ARPES is close to the magnetic ordering wave vector found in neutron scattering. The transitions are suppressed when YbRu$_2$Ge$_2$ is doped with 12.5% Rh. The electron doping leads to a shift of the band structure and successive Lifshitz transitions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا