ﻻ يوجد ملخص باللغة العربية
We use angle-resolved photoemission spectroscopy to study heavy fermion superconductor Ce2RhIn8. The Fermi surface is rather complicated and consists of several hole and electron pock- ets. We do not observe kz dispersion of Fermi sheets, which is consistent with 2D character of the electronic structure. Comparison of the ARPES data and band structure calculations points to a localized picture of f electrons. Our findings pave the way for understanding the transport and thermodynamical properties of this material.
We have carried out high-resolution angle-resolved photoemission measurements on the Cebased heavy fermion compound CePt2In7 that exhibits stronger two-dimensional character than the prototypical heavy fermion system CeCoIn5. Multiple Fermi surface s
We systemically investigate the nature of Ce 4f electrons in structurally layered heavy-fermion compounds CcmMnIn3m+2n (with M =Co, Rh, Ir, and Pt, m=l, 2, n=0 - 2), at low temperature using on-resonance angle-resolved photoemission spectroscopy. Thr
The localized-to-itinerant transition of f electrons lies at the heart of heavy-fermion physics, but has only been directly observed in single-layer Ce-based materials. Here, we report a comprehensive study on the electronic structure and nature of t
PtBi2 with a layered trigonal crystal structure was recently reported to exhibit an unconventional large linear magnetoresistance, while the mechanism involved is still elusive. Using high resolution angle-resolved photoemission spectroscopy, we pres
We studied the electronic structure of the heavy fermion compound Yb(Ru$_{1-x}$Rh$_{x}$)$_2$Ge$_2$ with $x=0$ and nominally $x=0.125$ using ARPES and LDA calculations. We find a valence band structure of Yb corresponding to a non-integer valence clos