ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-perturbative evaluation of some QED contributions to the muonic hydrogen $bm{n=2}$ Lamb shift and hyperfine structure

187   0   0.0 ( 0 )
 نشر من قبل Paul Indelicato
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Paul Indelicato




اسأل ChatGPT حول البحث

The largest contributions to the $n=2$ Lamb-shift, fine structure interval and $2s$ hyperfine structure of muonic hydrogen are calculated by exact numerical evaluations of the Dirac equation, rather than by a perturbation expansion in powers of $1/c$, in the framework of non-relativistic quantum electrodynamics. Previous calculations and the validity of the perturbation expansion for light elements are confirmed. The dependence of the various effects on the nuclear size and model are studied

قيم البحث

اقرأ أيضاً

The measurement of the 2P^{F=2}_{3/2} to 2S^{F=1}_{1/2} transition in muonic hydrogen by Pohl et al. and subsequent analysis has led to the conclusion that the rms radius of the proton differs from the accepted (CODATA) value by approximately 4%, cor responding to a 4.9 sigma discrepancy. We investigate the finite-size effects - in particular the dependence on the shape of the proton electric form-factor - relevant to this transition using bound-state QED with nonperturbative, relativistic Dirac wave-functions for a wide range of idealised charge-distributions and a parameterization of experimental data in order to comment on the extent to which the perturbation-theory analysis which leads to the above conclusion can be confirmed. We find no statistically significant dependence of this correction on the shape of the proton form-factor.
195 - Marc Diepold 2016
We provide an up to date summary of the theory contributions to the 2S-2P Lamb shift and the fine structure of the 2P state in the muonic helium ion $(mathrm{mu^4He})^+$. This summary serves as the basis for the extraction of the alpha particle charg e radius from the muonic helium Lamb shift measurements at the Paul Scherrer Institute, Switzerland. Individual theory contributions needed for a charge radius extraction are compared and compiled into a consistent summary. The influence of the alpha particle charge distribution on the elastic two-photon exchange is studied to take into account possible model-dependencies of the energy levels on the electric form factor of the nucleus. We also discuss the theory uncertainty which enters the extraction of the $mathrm{^3He-^4He}$ isotope shift from the muonic measurements. The theory uncertainty of the extraction is much smaller than a present discrepancy between previous isotope shift measurements. This work completes our series of $n=2$ theory compilations in light muonic atoms which we have performed already for muonic hydrogen, deuterium, and helium-3 ions.
We investigate the influence of the spatial extent of the proton magnetization and charge densities on the 2S hyperfine splitting in muonic hydrogen. The use of a non-perturbative relativistic Dirac approach leads to corrections of 15% to values obta ined from the perturbative treatment encapsulated by the Zemach radius, which surpass the next-leading order contribution in the perturbation series by an order of magnitude.
We present a precise calculation of the Lamb shift $(2P_{1/2}-2S_{1/2})$ in muonic ions $(mu ^6_3Li)^{2+},~(mu ^7_3Li)^{2+}$, $(mu ^9_4Be)^{3+},~(mu ^{10}_4Be)^{3+}$, $(mu ^{10}_5B)^{4+},~(mu ^{11}_5B)^{4+}$. The contributions of orders $alpha^3dival pha^6$ to the vacuum polarization, nuclear structure and recoil, relativistic effects are taken into account. Our numerical results are consistent with previous calculations and improve them due to account of new corrections. The obtained results can be used for the comparison with future experimental data, and extraction more accurate values of nuclear charge radii.
In view of the future plans to measure the Lamb shift in muonic Lithium atoms we address the microscopic theory of the $mu$-$^6$Li$^{2+}$ and $mu$-$^7$Li$^{2+}$ systems. The goal of the CREMA collaboration is to measure the Lamb shift to extract the charge radius with high precision and compare it to electron scattering data or atomic spectroscopy to see if interesting puzzles, such as the proton and deuteron radius puzzles, arise. For this experiment to be successful, theoretical information on the nuclear structure corrections to the Lamb shift is needed. For $mu$-$^6$Li$^{2+}$ and $mu$-$^7$Li$^{2+}$ there exist only estimates of nuclear structure corrections based on experimental data that suffer from very large uncertainties. We present the first steps towards an ab initio computation of these quantities using few-body techniques.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا