ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-perturbative Analysis of the Influence of the Proton Magnetization and Charge Densities on the Hyperfine Splitting of Muonic Hydrogen

148   0   0.0 ( 0 )
 نشر من قبل Jonathan Carroll
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the influence of the spatial extent of the proton magnetization and charge densities on the 2S hyperfine splitting in muonic hydrogen. The use of a non-perturbative relativistic Dirac approach leads to corrections of 15% to values obtained from the perturbative treatment encapsulated by the Zemach radius, which surpass the next-leading order contribution in the perturbation series by an order of magnitude.



قيم البحث

اقرأ أيضاً

The measurement of the 2P^{F=2}_{3/2} to 2S^{F=1}_{1/2} transition in muonic hydrogen by Pohl et al. and subsequent analysis has led to the conclusion that the rms radius of the proton differs from the accepted (CODATA) value by approximately 4%, cor responding to a 4.9 sigma discrepancy. We investigate the finite-size effects - in particular the dependence on the shape of the proton electric form-factor - relevant to this transition using bound-state QED with nonperturbative, relativistic Dirac wave-functions for a wide range of idealised charge-distributions and a parameterization of experimental data in order to comment on the extent to which the perturbation-theory analysis which leads to the above conclusion can be confirmed. We find no statistically significant dependence of this correction on the shape of the proton form-factor.
The current status of the determination of corrections to the hyperfine splitting of the ground state in hydrogen is considered. Improved calculations are provided taking into account the most recent value for the proton charge radius. Comparing expe rimental data with predictions for the hyperfine splitting, the Zemach radius of the proton is deduced to be $1.045(16)$ fm. Employing exponential parametrizations for the electromagnetic form factors we determine the magnetic radius of the proton to be $0.778(29)$ fm. Both values are compared with the corresponding ones derived from the data obtained in electron-proton scattering experiments and the data extracted from a rescaled difference between the hyperfine splittings in hydrogen and muonium.
235 - Paul Indelicato 2012
The largest contributions to the $n=2$ Lamb-shift, fine structure interval and $2s$ hyperfine structure of muonic hydrogen are calculated by exact numerical evaluations of the Dirac equation, rather than by a perturbation expansion in powers of $1/c$ , in the framework of non-relativistic quantum electrodynamics. Previous calculations and the validity of the perturbation expansion for light elements are confirmed. The dependence of the various effects on the nuclear size and model are studied
Antihydrogen, the lightest atom consisting purely of antimatter, is an ideal laboratory to study the CPT symmetry by comparison to hydrogen. With respect to absolute precision, transitions within the ground-state hyperfine structure (GS-HFS) are most appealing by virtue of their small energy separation. ASACUSA proposed employing a beam of cold antihydrogen atoms in a Rabi-type experiment to determine the GS-HFS in a field-free region. Here we present a measurement of the zero-field hydrogen GS-HFS using the spectroscopy apparatus of ASACUSAs antihydrogen experiment. The measured value of $ u_mathrm{HF}$=$1~420~405~748.4(3.4)(1.6)~textrm{Hz}$ with a relative precision of $Delta$$ u_mathrm{HF}$/$ u_mathrm{HF}$=$2.7times10^{-9}$ constitutes the most precise determination of this quantity in a beam and verifies the developed spectroscopy methods for the antihydrogen HFS experiment to the ppb level. Together with the recently presented observation of antihydrogen atoms $2.7~textrm{m}$ downstream of the production region, the prerequisites for a measurement with antihydrogen are now available within the ASACUSA collaboration.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا