ﻻ يوجد ملخص باللغة العربية
Independent component analysis (ICA) has been shown to be useful in many applications. However, most ICA methods are sensitive to data contamination and outliers. In this article we introduce a general minimum U-divergence framework for ICA, which covers some standard ICA methods as special cases. Within the U-family we further focus on the gamma-divergence due to its desirable property of super robustness, which gives the proposed method gamma-ICA. Statistical properties and technical conditions for the consistency of gamma-ICA are rigorously studied. In the limiting case, it leads to a necessary and sufficient condition for the consistency of MLE-ICA. This necessary and sufficient condition is weaker than the condition known in the literature. Since the parameter of interest in ICA is an orthogonal matrix, a geometrical algorithm based on gradient flows on special orthogonal group is introduced to implement gamma-ICA. Furthermore, a data-driven selection for the gamma value, which is critical to the achievement of gamma-ICA, is developed. The performance, especially the robustness, of gamma-ICA in comparison with standard ICA methods is demonstrated through experimental studies using simulated data and image data.
Independent component analysis (ICA) has been widely used for blind source separation in many fields such as brain imaging analysis, signal processing and telecommunication. Many statistical techniques based on M-estimates have been proposed for esti
Functional principal component analysis (FPCA) has been widely used to capture major modes of variation and reduce dimensions in functional data analysis. However, standard FPCA based on the sample covariance estimator does not work well in the prese
Compositional data represent a specific family of multivariate data, where the information of interest is contained in the ratios between parts rather than in absolute values of single parts. The analysis of such specific data is challenging as the a
Fast Independent Component Analysis (FastICA) is a component separation algorithm based on the levels of non-Gaussianity. Here we apply the FastICA to the component separation problem of the microwave background including carbon monoxide (CO) line em
Fan et al. [$mathit{Annals}$ $mathit{of}$ $mathit{Statistics}$ $textbf{47}$(6) (2019) 3009-3031] proposed a distributed principal component analysis (PCA) algorithm to significantly reduce the communication cost between multiple servers. In this pape