ﻻ يوجد ملخص باللغة العربية
We investigate the number-anomalous of the Majorana zero modes in the non-Hermitian Kitaev chain, whose hopping and superconductor paring strength are both imbalanced. We find that the combination of two imbalanced non-Hermitian terms can induce defective Majorana edge states, which means one of the two localized edge states will disappear due to the non-Hermitian suppression effect. As a result, the conventional bulk-boundary correspondence is broken down. Besides, the defective edge states are mapped to the ground states of non-Hermitian transverse field Ising model, and the global phase diagrams of ferromagnetic-antiferromagnetic crossover for ground states are given. Our work, for the first time, reveal the break of topological robustness for the Majorana zero modes, which predict more novel effects both in topological material and in non-Hermitian physics.
A single unit cell contains all the information about the bulk system, including the topological feature. The topological invariant can be extracted from a finite system, which consists of several unit cells under certain environment, such as a non-H
We study a 1D chain of non-interacting bosonic cavities which are subject to nearest-neighbour parametric driving. With a suitable choice of drive phases, this model is strongly analogous to the celebrated Kitaev chain model of a 1D p-wave supercondu
Majorana zero modes in a superconductor-semiconductor nanowire have been extensively studied during the past decade. Disorder remains a serious problem, preventing the definitive observation of topological Majorana bound states. Thus, it is worthwhil
In condensed matter physics, non-Abelian statistics for Majorana zero modes (or Majorana Fermions) is very important, really exotic, and completely robust. The race for searching Majorana zero modes and verifying the corresponding non-Abelian statist
We show that topological phases should be realizable in readily available and well studied heterostructures. In particular we identify a new class of topological materials which are well known in spintronics: helical ferromagnet-superconducting junct