ترغب بنشر مسار تعليمي؟ اضغط هنا

Alternation of sign of magnetization current in driven XXZ chains with twisted XY boundary gradients

169   0   0.0 ( 0 )
 نشر من قبل Popkov Vladislav
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English
 تأليف V. Popkov




اسأل ChatGPT حول البحث

We investigate an open XXZ spin 1/2 chain driven out of equilibrium by coupling with boundary reservoirs targeting different spin orientations in XY plane. Symmetries of the model are revealed which appear to be different for spin chains of odd and even sizes. As a result, spin current is found to alternate with chain length, ruling out the possibility of ballistic transport. Heat transport is switched off completely by virtue of another global symmetry. Further, we investigate the model numerically and analytically. At strong coupling, we find exact nonequilibrium steady state using a perturbation theory. The state is determined by solving secular conditions which guarantee self-consistency of the perturbative expansion. We find nontrivial dependence of the magnetization current on the spin chain anisotropy $Delta$ in the critical region $|Delta|<1$, and a phenomenon of tripling of the twisting angle along the chain for narrow lacunes of $Delta$.



قيم البحث

اقرأ أيضاً

This work is devoted to the investigation of nontrivial transport properties in many-body quantum systems. Precisely, we study transport in the steady state of spin-1/2 Heisenberg XXZ chains, driven out of equilibrium by two magnetic baths with fixed, different magnetization. We take grad
203 - D. Karevski , V. Popkov , 2012
We demonstrate that the exact non-equilibrium steady state of the one-dimensional Heisenberg XXZ spin chain driven by boundary Lindblad operators can be constructed explicitly with a matrix product ansatz for the non-equilibrium density matrix where the matrices satisfy a {it quadratic algebra}. This algebra turns out to be related to the quantum algebra $U_q[SU(2)]$. Coherent state techniques are introduced for the exact solution of the isotropic Heisenberg chain with and without quantum boundary fields and Lindblad terms that correspond to two different completely polarized boundary states. We show that this boundary twist leads to non-vanishing stationary currents of all spin components. Our results suggest that the matrix product ansatz can be extended to more general quantum systems kept far from equilibrium by Lindblad boundary terms.
122 - V. Eisler , F. Igloi , I. Peschel 2008
We study solvable spin chains where either fields or couplings vary linearly in space and create a sandwich-like structure of the ground state. We find that the entanglement entropy between two halves of a chain varies logarithmically with the interf ace width. After quenching to a homogeneous critical system, the entropy grows logarithmically in time in the XX model, but quadratically in the transverse Ising chain. We explain this behaviour and indicate generalizations to other power laws.
We study the survival of the current induced initially by applying a twist at the boundary of a chain of hard-core bosons (HCBs), subject to a periodic double $delta$-function kicks in the staggered on-site potential. We study the current flow and th e work-done on the system at the long-time limit as a function of the driving frequency. Like a recent observation in the HCB chain with single $delta$-function kick in the staggered on-site potential, here we also observe many dips in the current flow and concurrently many peaks in the work-done on the system at some specific values of the driving frequency. However, unlike the single kicked case, here we do not observe a complete disappearance of the current in the limit of a high driving frequency, which shows the absence of any dynamical localization in the double $delta$-functions kicked HCB chain. Our analytical estimations of the saturated current and the saturated work-done, defined at the limit of a large time together with a high driving frequency, match very well with the exact numerics. In the case of the very small initial current, induced by a very small twist $ u$, we observe that the saturated current is proportional to $ u$. Finally, we study the time-evolution of the half-filled HCB chain where the particles are localized in the central part of the chain. We observe that the particles spread linearly in a light-cone like region at the rate determined by the maximum value of the group velocity. Except for a very trivial case, the maximum group velocity never vanishes, and therefore we do not observe any dynamical localization in the system.
We consider the partial transpose of the spin reduced density matrix of two disjoint blocks in spin chains admitting a representation in terms of free fermions, such as XY chains. We exploit the solution of the model in terms of Majorana fermions and show that such partial transpose in the spin variables is a linear combination of four Gaussian fermionic operators. This representation allows to explicitly construct and evaluate the integer moments of the partial transpose. We numerically study critical XX and Ising chains and we show that the asymptotic results for large blocks agree with conformal field theory predictions if corrections to the scaling are properly taken into account.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا