ﻻ يوجد ملخص باللغة العربية
A computable structure A is x-computably categorical for some Turing degree x, if for every computable structure B isomorphic to A there is an isomorphism f:B -> A with f computable in x. A degree x is a degree of categoricity if there is a computable A such that A is x-computably categorical, and for all y, if A is y-computably categorical then y computes x. We construct a Sigma_2 set whose degree is not a degree of categoricity. We also demonstrate a large class of degrees that are not degrees of categoricity by showing that every degree of a set which is 2-generic relative to some perfect tree is not a degree of categoricity. Finally, we prove that every noncomputable hyperimmune-free degree is not a degree of categoricity.
We investigate the complexity of embeddings between bi-embeddable structures. In analogy with categoricity spectra, we define the bi-embeddable categoricity spectrum of a structure $mathcal A$ as the family of Turing degrees that compute embeddings b
A computable structure $mathcal{A}$ has degree of categoricity $mathbf{d}$ if $mathbf{d}$ is exactly the degree of difficulty of computing isomorphisms between isomorphic computable copies of $mathcal{A}$. Fokina, Kalimullin, and Miller showed that e
We study the algorithmic complexity of embeddings between bi-embeddable equivalence structures. We define the notions of computable bi-embeddable categoricity, (relative) $Delta^0_alpha$ bi-embeddable categoricity, and degrees of bi-embeddable catego
Let $I_A$ be a toric ideal. We prove that the degrees of the elements of the Graver basis of $I_A$ are not polynomially bounded by the true degrees of the circuits of $I_A$.
We compare the degrees of enumerability and the closed Medvedev degrees and find that many situations occur. There are nonzero closed degrees that do not bound nonzero degrees of enumerability, there are nonzero degrees of enumerability that do not b