ترغب بنشر مسار تعليمي؟ اضغط هنا

Dimensionality controlled Mott transition and correlation effects in single- and bi-layer perovskite iridates

150   0   0.0 ( 0 )
 نشر من قبل Qiang Wang
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We studied Sr2IrO4 and Sr3Ir2O7 using angle-resolved photoemission spectroscopy (ARPES), making direct experimental determinations of intra- and inter-cell coupling parameters as well as Mott correlations and gap sizes. The results are generally consistent with LDA+U+Spin-orbit coupling (SOC) calculations, though the calculations missed the momentum positions of the dominant electronic states and neglected the importance of inter-cell coupling on the size of the Mott gap. The calculations also ignore the correlation-induced spectral peak widths, which are critical for making a connection to activation energies determined from transport experiments. The data indicate a dimensionality-controlled Mott transition in these 5d transition-metal oxides (TMOs).



قيم البحث

اقرأ أيضاً

219 - J. W. Kim , Y. Choi , Jungho Kim 2012
Using resonant x-ray diffraction, we observe an easy c-axis collinear antiferromagnetic structure for the bilayer Sr$_3$Ir$_2$O$_7$, a significant contrast to the single layer Sr$_2$IrO$_4$ with in-plane canted moments. Based on a microscopic model H amiltonian, we show that the observed spin-flop transition as a function of number of IrO$_2$ layers is due to strong competition among intra- and inter-layer bond-directional pseudo-dipolar interactions of the spin-orbit entangled $J_{eff}$=1/2 moments. With this we unravel the origin of anisotropic exchange interactions in a Mott insulator in the strong spin-orbit coupling regime, which holds the key to the various types of unconventional magnetism proposed in 5$d$ transition metal oxides.
In this tutorial we will tackle the problem of electronic correlations in quasi-one-dimensional organic superconductors. We will go through different pieces of experimental evidence showing the range of applicability of the Fermi and Luttinger liquid descriptions of the normal phase of the Bechgaard salts series and their sulfur analogs.
We investigate the correlation-induced Mott, magnetic, and topological phase transitions in artificial (111) bilayers of perovskite transition-metal oxides LaAuO$_3$ and SrIrO$_3$ for which the previous density-functional theory calculations predicte d topological insulating states. Using the dynamical-mean-field theory with realistic band structures and Coulomb interactions, LaAuO$_3$ bilayer is shown to be far away from a Mott insulating regime, and a topological-insulating state is robust. On the other hand, SrIrO$_3$ bilayer is on the verge of an orbital-selective topological Mott transition and turns to a trivial insulator by an antiferromagnetic ordering. Oxide bilayers thus provide a novel class of topological materials for which the interplay between the spin-orbit coupling and electron-electron interactions is a fundamental ingredient.
72 - Bongjae Kim , Peitao Liu , 2017
The competition between spin-orbit coupling, bandwidth ($W$) and electron-electron interaction ($U$) makes iridates highly susceptible to small external perturbations, which can trigger the onset of novel types of electronic and magnetic states. Here we employ {em first principles} calculations based on density functional theory and on the constrained random phase approximation to study how dimensionality and strain affect the strength of $U$ and $W$ in (SrIrO$_3$)$_m$/(SrTiO$_3$) superlattices. The result is a phase diagram explaining two different types of controllable magnetic and electronic transitions, spin-flop and insulator-to-metal, connected with the disruption of the $J_{eff}=1/2$ state which cannnot be understood within a simplified local picture.
We study the correlated electronic structure of single-layer iridates based on structurally-undistorted Ba$_2$IrO$_4$. Starting from the first-principles band structure, the interplay between local Coulomb interactions and spin-orbit coupling is inve stigated by means of rotational-invariant slave-boson mean-field theory. The evolution from a three-band description towards an anisotropic one-band ($J=1/2$) picture is traced. Single-site and cluster self-energies are used to shed light on competing Slater- and Mott-dominated correlation regimes. We reveal a clear asymmetry between electron and hole doping, notably in the nodal/anti-nodal Fermi-surface dichotomy at strong coupling. Electron-doped iridates appear comparable to hole-doped cuprates due to the different sign of the next-nearest-neighbor hopping $t$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا