ﻻ يوجد ملخص باللغة العربية
The competition between spin-orbit coupling, bandwidth ($W$) and electron-electron interaction ($U$) makes iridates highly susceptible to small external perturbations, which can trigger the onset of novel types of electronic and magnetic states. Here we employ {em first principles} calculations based on density functional theory and on the constrained random phase approximation to study how dimensionality and strain affect the strength of $U$ and $W$ in (SrIrO$_3$)$_m$/(SrTiO$_3$) superlattices. The result is a phase diagram explaining two different types of controllable magnetic and electronic transitions, spin-flop and insulator-to-metal, connected with the disruption of the $J_{eff}=1/2$ state which cannnot be understood within a simplified local picture.
Strong electronic interactions and spin orbit coupling can be conducive for realizing novel broken symmetry phases supporting quasiparticles with nontrivial band topology. 227 pyrochlore iridates provide a suitable material platform for studying such
Electrical resistivity and ac-susceptibility measurements under high pressure were carried out in high-quality single crystals of $alpha$-Mn. The pressure-temperature phase diagram consists of an antiferromagnetic ordered phase (0<$P$<1.4 GPa, $T<T_{
Using resonant x-ray diffraction, we observe an easy c-axis collinear antiferromagnetic structure for the bilayer Sr$_3$Ir$_2$O$_7$, a significant contrast to the single layer Sr$_2$IrO$_4$ with in-plane canted moments. Based on a microscopic model H
A pressure and temperature dependent Raman study of the vibrational and spin dynamics in CuGeO3 is presented. A new low temperature, high pressure phase has been identified, and a pressure-temperature phase-diagram is proposed for CuGeO3. The pressur
Using muon spin spectroscopy we have found that, for both Na$_x$CoO$_2$ (0.6 $leq x leq$ 0.9) and 3- and 4-layer cobaltites, a common low temperature magnetic state (which in some cases is manifest as an incommensurate spin density wave) forms in the