ترغب بنشر مسار تعليمي؟ اضغط هنا

Dimensionality-strain phase diagram of strontium iridates

73   0   0.0 ( 0 )
 نشر من قبل Bongjae Kim
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The competition between spin-orbit coupling, bandwidth ($W$) and electron-electron interaction ($U$) makes iridates highly susceptible to small external perturbations, which can trigger the onset of novel types of electronic and magnetic states. Here we employ {em first principles} calculations based on density functional theory and on the constrained random phase approximation to study how dimensionality and strain affect the strength of $U$ and $W$ in (SrIrO$_3$)$_m$/(SrTiO$_3$) superlattices. The result is a phase diagram explaining two different types of controllable magnetic and electronic transitions, spin-flop and insulator-to-metal, connected with the disruption of the $J_{eff}=1/2$ state which cannnot be understood within a simplified local picture.



قيم البحث

اقرأ أيضاً

Strong electronic interactions and spin orbit coupling can be conducive for realizing novel broken symmetry phases supporting quasiparticles with nontrivial band topology. 227 pyrochlore iridates provide a suitable material platform for studying such emergent phenomena where both topology and competing orders play important roles. In contrast to the most members of this material class, which are thought to display all-in all-out (AIAO) type magnetically ordered low-temperature insulating ground states, Pr$_2$Ir$_2$O$_7$ remains metallic while exhibiting spin ice (SI) correlations at low temperatures. Additionally, this is the only 227 iridate compound, which exhibits a large anomalous Hall effect (AHE) along [1,1,1] direction below 1.5 K, without possessing any measurable magnetic moment. By focusing on the normal state of 227 iridates, described by a parabolic semimetal with quadratic band touching, we use renormalization group analysis, mean-field theory, and phenomenological Landau theory as three complementary methods to construct a global phase diagram in the presence of generic local interactions among itinerant electrons of Ir ions. While the global phase diagram supports several competing multipolar orders, motivated by the phenomenology of 227 iridates we particularly emphasize the competition between AIAO and SI orders and how it can cause a mixed phase with three-in one-out (3I1O) spin configurations. In terms of topological properties of Weyl quasiparticles of the 3I1O state, we provide an explanation for the magnitude and the direction of the observed AHE in Pr$_2$Ir$_2$O$_7$. We propose a strain induced enhancement of the onset temperature for AHE in thin films of Pr$_2$Ir$_2$O$_7$ and additional experiments for studying competing orders in the vicinity of the metal-insulator transition.
Electrical resistivity and ac-susceptibility measurements under high pressure were carried out in high-quality single crystals of $alpha$-Mn. The pressure-temperature phase diagram consists of an antiferromagnetic ordered phase (0<$P$<1.4 GPa, $T<T_{ rm N}$), a pressure-induced ordered phase (1.4<$P$<4.2-4.4 GPa, $T<T_{rm A}$), and a paramagnetic phase. A significant increase was observed in the temperature dependence of ac-susceptibility at $T_{rm A}$, indicating that the pressure-induced ordered phase has a spontaneous magnetic moment. Ferrimagnetic order and parasitic ferromagnetism are proposed as candidates for a possible magnetic structure. At the critical pressure, where the pressure-induced ordered phase disappears, the temperature dependence of the resistivity below 10 K is proportional to $T^{5/3}$. This non-Fermi liquid behavior suggests the presence of pronounced magnetic fluctuation.
211 - J. W. Kim , Y. Choi , Jungho Kim 2012
Using resonant x-ray diffraction, we observe an easy c-axis collinear antiferromagnetic structure for the bilayer Sr$_3$Ir$_2$O$_7$, a significant contrast to the single layer Sr$_2$IrO$_4$ with in-plane canted moments. Based on a microscopic model H amiltonian, we show that the observed spin-flop transition as a function of number of IrO$_2$ layers is due to strong competition among intra- and inter-layer bond-directional pseudo-dipolar interactions of the spin-orbit entangled $J_{eff}$=1/2 moments. With this we unravel the origin of anisotropic exchange interactions in a Mott insulator in the strong spin-orbit coupling regime, which holds the key to the various types of unconventional magnetism proposed in 5$d$ transition metal oxides.
A pressure and temperature dependent Raman study of the vibrational and spin dynamics in CuGeO3 is presented. A new low temperature, high pressure phase has been identified, and a pressure-temperature phase-diagram is proposed for CuGeO3. The pressur e dependence of the effective exchange interaction, of the spin-Peierls gap, and of the spin-Peierls temperature strongly supports a model in which next nearest neighbor interactions stabilise the SP ground state. The Raman data allow for a quantitative estimate of the pressure dependence of the next nearest neighbor interactions.
Using muon spin spectroscopy we have found that, for both Na$_x$CoO$_2$ (0.6 $leq x leq$ 0.9) and 3- and 4-layer cobaltites, a common low temperature magnetic state (which in some cases is manifest as an incommensurate spin density wave) forms in the CoO$_2$ planes. Here we summarize those results and report a dome-shaped relation between the transition temperature into the low-$T$ magnetic state and the composition $x$ for Na$_x$CoO$_2$ and/or the high-temperature asymptotic limit of thermopower in the more complex 3- and 4-layer cobaltites. This behavior is explained using the Hubbard model on two-dimensional triangular lattice in the CoO$_2$ plane.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا