ﻻ يوجد ملخص باللغة العربية
In this paper we calculate the Witt ring W(C) of a smooth geometrically connected projective curve C over a finite field of characteristic different from 2. We view W(C) as a subring of W(k(C)) where k(C) is the function field of C. We show that the triviality of the Clifford algebra of a bilinear space over C gives the main relation. The calculation is then completed using classical results for bilinear spaces over fields.
In this work, we present a generalization to varieties and sheaves of the fundamental ideal of the Witt ring of a field by defining a sheaf of fundamental ideals $tilde{I}$ and a sheaf of Witt rings $tilde{W}$ in the obvious way. The Milnor conjectur
We study matrix factorizations of locally free coherent sheaves on a scheme. For a scheme that is projective over an affine scheme, we show that homomorphisms in the homotopy category of matrix factorizations may be computed as the hypercohomology of
The rings of $p$-typical Witt vectors are interpreted as spaces of vanishing cycles for some perverse sheaves over a disc. This allows to localize an isomorphism emerging in Drinfelds theory of prismatization [Dr], Prop. 3.5.1, namely to express it a
We describe the 0-th Fitting ideal of the Jacobian module of a plane curve in terms of determinants involving the Jacobian syzygies of this curve. This leads to new characterizations of maximal Tjurina curves, that is of non free plane curves, whose
We propose a general definition of mathematical instanton bundle with given charge on any Fano threefold extending the classical definitions on $mathbb P^3$ and on Fano threefold with cyclic Picard group. Then we deal with the case of the blow up of