ترغب بنشر مسار تعليمي؟ اضغط هنا

Instanton bundles on the blow up of the projective $3$-space at a point

150   0   0.0 ( 0 )
 نشر من قبل Gianfranco Casnati
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a general definition of mathematical instanton bundle with given charge on any Fano threefold extending the classical definitions on $mathbb P^3$ and on Fano threefold with cyclic Picard group. Then we deal with the case of the blow up of $mathbb P^3$ at a point, giving an explicit construction of instanton bundles satisfying some important extra properties: moreover, we also show that they correspond to smooth points of a component of the moduli space.



قيم البحث

اقرأ أيضاً

We propose a notion of instanton bundle (called $H$-instanton bundle) on any projective variety of dimension three polarized by a very ample divisor $H$, that naturally generalizes the ones on $mathbb{P}^3$ and on the flag threefold $F(0,1,2)$. We di scuss the cases of Veronese and Fano threefolds. Then we deal with $H$-instanton bundles $mathcal{E}$ on three-dimensional rational normal scrolls $S(a_0,a_1,a_2)$. We give a monadic description of $H$-instanton bundles and we prove the existence of $mu$-stable $H$-instanton bundles on $S(a_0,a_1,a_2)$ for any admissible charge $k=c_2(mathcal{E})H$. Then we deal in more detail with $S(a,a,b)$ and $S(a_0,a_1,a_2)$ with $a_0+a_1>a_2$ and even degree. Finally we describe a nice component of the moduli space of $mu$-stable bundles whose points represent $H$-instantons.
We study the irreducible components of the moduli space of instanton sheaves on $mathbb{P}^3$, that is rank 2 torsion free sheaves $E$ with $c_1(E)=c_3(E)=0$ satisfying $h^1(E(-2))=h^2(E(-2))=0$. In particular, we classify all instanton sheaves with $c_2(E)le4$, describing all the irreducible components of their moduli space. A key ingredient for our argument is the study of the moduli space ${mathcal T}(d)$ of stable sheaves on $mathbb{P}^3$ with Hilbert polynomial $P(t)=dcdot t$, which contains, as an open subset, the moduli space of rank 0 instanton sheaves of multiplicity $d$; we describe all the irreducible components of ${mathcal T}(d)$ for $dle4$.
In order to obtain existence criteria for orthogonal instanton bundles on $mathbb{P}^n$, we provide a bijection between equivalence classes of orthogonal instanton bundles with no global sections and symmetric forms. Using such correspondence we are able to provide explicit examples of orthogonal instanton bundles with no global sections on $mathbb{P}^n$ and prove that every orthogonal instanton bundle with no global sections on $mathbb{P}^n$ and charge $cgeq 3$ has rank $rleq (n-1)c$. We also prove that when the rank $r$ of the bundles reaches the upper bound, $mathcal{M}_{mathbb{P}^n}^{mathcal{O}}(c,r)$, the coarse moduli space of orthogonal instanton bundles with no global sections on $mathbb{P}^n$, with charge $cgeq 3$ and rank $r$, is affine, reduced and irreducible. Last, we construct Kronecker modules to determine the splitting type of the bundles in $mathcal{M}_{mathbb{P}^n}^{mathcal{O}}(c,r)$, whenever is non-empty.
We present a new family of monads whose cohomology is a stable rank two vector bundle on $PP$. We also study the irreducibility and smoothness together with a geometrical description of some of these families. Such facts are used to prove that the mo duli space of stable rank two vector bundles of zero first Chern class and second Chern class equal to 5 has exactly three irreducible components.
We present a new family of monads whose cohomology is a stable rank two vector bundle on $mathbb{P}^3$. We also study the irreducibility and smoothness together with a geometrical description of some of these families. These facts are used to constru ct a new infinite series of rational moduli components of stable rank two vector bundles with trivial determinant and growing second Chern class. We also prove that the moduli space of stable rank two vector bundles with trivial determinant and second Chern class equal to 5 has exactly three irreducible rational components.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا