ﻻ يوجد ملخص باللغة العربية
The initial temperature $T_{i}$, energy density $varepsilon_{i}$, and formation time $tau_{i}$ of the initial state of the QGP formed in the heavy ion collisions at RHIC and LHC energies are determined using the data driven Color String Percolation Model (CSPM). Multiparticle production by interacting strings stretched between projectile and target form a spanning cluster at the percolation threshold. The relativistic kinetic theory relation for $eta/s$ is evaluated as a function of $it T$ and the mean free path ($lambda_{mfp}$) using data and CSPM. $eta/s$($T_{i}$, $lambda_{mfp}$) describes the transition from a strongly interacting QGP at $T/T_{c} sim 1$ to a weakly coupled QGP at $T/T_{c} ge 6$. We find that the reciprocal of $eta/s$ is equal to the trace anomaly $Delta = varepsilon-3P/T^{4}$ which also describes the transition. We couple this initial state of the QGP to a 1D Bjorken expansion to determine the sound velocity $c_{s}^{2}$ of the QGP for 0.85 $le T/T_{c} leq 3$. The bulk thermodynamic quantities and the equation of state are in excellent agreement with LQCD results.
The Color String Percolation Model (CSPM) is used to determine the shear viscosity to entropy ratio ($eta/s$) of the Quark-Gluon Plasma (QGP) produced in Au-Au collisions at $sqrt{s_{NN}}$ = 200 GeV at RHIC and Pb-Pb at $sqrt{s_{NN}}$ = 2.76 TeV at L
We present a fully three-dimensional initial state model for relativistic heavy-ion collisions at RHIC Beam Energy Scan (BES) collision energies. The initial energy and net baryon density profiles are produced based on a classical string deceleration
Possible phase transition of strongly interacting matter from hadron to a quark-gluon plasma state have in the past received c onsiderable interest. It has been suggested that this problem might be treated by percolation theory. The clustering of col
These proceedings present a brief overview of the main results on jet-modifications in heavy ion collisions at RHIC. In heavy ion collisions, jets are studied using single hadron spectra and di-hadron correlations with a high-pt{} trigger hadrons. At
By assuming the existing of memory effects and long-range interactions in the hot and dense matter produced in high energy heavy ion collisions, the nonextensive statistics together with the relativistic hydrodynamics including phase transition is us