ترغب بنشر مسار تعليمي؟ اضغط هنا

Stellar populations in the Milky Way bulge region : Towards solving the Galactic bulge and bar shapes using 2MASS data

173   0   0.0 ( 0 )
 نشر من قبل Annie Robin
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We re-analyse photometric near-infrared data in order to investigate why it is so hard to get a consensus for the shape and density law of the bulge, as seen from the literature. To solve the problem we use the Besancon Galaxy Model to provide a scheme for parameter fitting of the structural characteristics of the bulge region. The fitting process allows the determination of the global shape of the bulge main structure. We explore various parameters and shape for the bulge/bar structure based on Ferrers ellipsoids and fit the shape of the inner disc in the same process. The results show that the main structure is a quite standard triaxial boxy bar/bulge with an orientation of about 13 degree with respect to the Sun-centre direction. But the fit is greatly improved when we add a second structure, which is a longer and thicker ellipsoid. We emphasize that our first ellipsoid represent the main boxy bar of the Galaxy, and that the thick bulge could be either a classical bulge slightly flattened by the effect of the bar potential, or a inner thick disc counterpart. We show that the double clump seen at intermediate latitudes can be reproduced by adding a slight flare to the bar. In order to better characterize the populations, we further simulate several fields which have been surveyed in spectroscopy and for which metallicity distribution function (MDF) are available. The model is in good agreement with these MDF along the minor axis if we assume that the main bar has a mean solar metallicity and the second thicker population has a lower metallicity. It then creates naturally a vertical metallicity gradient by the mixing of the two poulations. (abridged)



قيم البحث

اقرأ أيضاً

114 - Carine Babusiaux 2012
Until recently our knowledge of the Galactic Bulge stellar populations was based on the study of a few low extinction windows. Large photometric and spectroscopic surveys are now underway to map large areas of the bulge. They probe several complex st ructures which are still to be fully characterized as well as their links with the inner disc, the thick disc and the inner halo. I will review our current, rapidly increasing, knowledge of the bulge stellar populations and the new insight expected towards the Gaia era to disentangle the formation history of the Galactic inner regions.
We present stellar age distributions of the Milky Way (MW) bulge region using ages for $sim$6,000 high-luminosity ($log(g) < 2.0$), metal-rich ($rm [Fe/H] ge -0.5$) bulge stars observed by the Apache Point Observatory Galactic Evolution Experiment (A POGEE). Ages are derived using {it The Cannon} label-transfer method, trained on a sample of nearby luminous giants with precise parallaxes for which we obtain ages using a Bayesian isochrone-matching technique. We find that the metal-rich bulge is predominantly composed of old stars ($>$8 Gyr). We find evidence that the planar region of the bulge ($|Z_{rm GC}| le 0.25$ kpc) enriched in metallicity, $Z$, at a faster rate ($dZ/dt sim$ 0.0034 ${rm Gyr^{-1}}$) than regions farther from the plane ($dZ/dt sim$ 0.0013 ${rm Gyr^{-1}}$ at $|Z_{rm GC}| > 1.00$ kpc). We identify a non-negligible fraction of younger stars (age $sim$ 2--5 Gyr) at metallicities of $rm +0.2 < [Fe/H] < +0.4$. These stars are preferentially found in the plane ($|Z_{rm GC}| le 0.25$ kpc) and between $R_{rm cy} approx 2-3$ kpc, with kinematics that are more consistent with rotation than are the kinematics of older stars at the same metallicities. We do not measure a significant age difference between stars found in and outside of the bar. These findings show that the bulge experienced an initial starburst that was more intense close to the plane than far from the plane. Then, star formation continued at super-solar metallicities in a thin disk at 2 kpc $lesssim R_{rm cy} lesssim$ 3 kpc until $sim$2 Gyr ago.
405 - Baitian Tang , Guy Worthey , 2014
This paper explores the integrated-light characteristics of the Milky Way (MW) bulge and to what extent they match those of elliptical galaxies in the local universe. We model composite stellar populations with realistic abundance distribution functi ons (ADFs), tracking the trends of individual elements as a function of overall heavy element abundance as actually observed in MW bulge stars. The resultant predictions for absorption feature strengths from the MW bulge mimic elliptical galaxies better than solar neighborhood stars do, but the MW bulge does not match elliptical galaxies, either. Comparing bulge versus elliptical galaxies, Fe, Ti, and Mg trend about the same for both but C, Na, and Ca seem irreconcilably different. Exploring the behavior of abundance compositeness leads to the concepts of red lean where a narrower ADF appears more metal rich than a wide one, and red spread where the spectral difference between wide and narrow ADFs increases as the ADF peak is moved to more metal-rich values. Tests on the systematics of recovering abundance, abundance pattern, and age from composite stellar populations using single stellar population models were performed. The chemical abundance pattern was recovered adequately, though a few minor systematic effects were uncovered. The prospects of measuring the width of the ADF of an old stellar population were investigated and seem bright using UV to IR photometry.
We present the first stellar density profile of the Milky Way bulge reaching latitude $b=0^circ$. It is derived by counting red clump stars within the colour--magnitude diagram constructed with the new PSF-fitting photometry from VISTA Variables in t he Vi a Lactea (VVV) survey data. The new stellar density map covers the area between $|l|leq 10^circ$ and $|b|leq 4.5^circ$ with unprecedented accuracy, allowing to establish a direct link between the stellar kinematics from the Giraffe Inner Bulge Spectroscopic Survey (GIBS) and the stellar mass density distribution. In particular, the location of the central velocity dispersion peak from GIBS matches a high overdensity in the VVV star count map. By scaling the total luminosity function (LF) obtained from all VVV fields to the LF from Zoccali et al.(2003), we obtain the first fully empirical estimate of the mass in stars and remnants of the Galactic bulge. The Milky Way bulge stellar mass within ($|b|<9.5^circ$, $|l|<10^circ$) is $2.0pm0.3times 10^{10}M_{odot}$.
We compare distance resolved, absolute proper motions in the Milky Way bar/bulge region to a grid of made-to-measure dynamical models with well defined pattern speeds. The data are obtained by combining the relative VVV Infrared Astrometric Catalog v 1 proper motions with the Gaia DR2 absolute reference frame. We undertake a comprehensive analysis of the various errors in our comparison, from both the data and the models, and allow for additional, unknown, contributions by using an outlier-tolerant likelihood function to evaluate the best fitting model. We quantify systematic effects such as the region of data included in the comparison, with or without possible overlap from spiral arms, and the choice of synthetic luminosity function and bar angle used to predict the data from the models. Resulting variations in the best-fit parameters are included in the final error budget. We measure the bar pattern speed to be Omega_b=35.4+-0.9 km/s/kpc and the azimuthal solar velocity to be V_phi_sun= 251.4+-1.7 km/s. These values, when combined with recent measurements of the Galactic rotation curve, yield the distance of corotation, 6.3 < R_(CR) [kpc] < 6.8, the outer Lindblad resonance (OLR), 10.5 < R_(OLR) [kpc] < 11.5, and the higher order, m=4, OLR, 8.5 < R_(OLR_4) [kpc] < 9.0. The measured low pattern speed provides strong evidence for the long-slow bar scenario.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا